Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Unsupervised Context-Sensitive Spelling Correct...
Search
youichiro
August 22, 2017
Technology
0
180
Unsupervised Context-Sensitive Spelling Correction of Clinical Free-Text with Word and Character N-Gram Embeddings
文献紹介(2017年8月22日)
長岡技術科学大学
自然言語処理研究室
youichiro
August 22, 2017
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.5k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
100
Multi-Agent Dual Learning
youichiro
1
180
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
120
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
140
勉強勉強会
youichiro
0
87
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
190
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
170
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
200
Other Decks in Technology
See All in Technology
Snowflakeの生成AI機能を活用したデータ分析アプリの作成 〜Cortex AnalystとCortex Searchの活用とStreamlitアプリでの利用〜
nayuts
1
480
Obsidian応用活用術
onikun94
2
490
Language Update: Java
skrb
2
290
研究開発と製品開発、両利きのロボティクス
youtalk
1
520
要件定義・デザインフェーズでもAIを活用して、コミュニケーションの密度を高める
kazukihayase
0
110
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
210
RSCの時代にReactとフレームワークの境界を探る
uhyo
10
3.4k
「何となくテストする」を卒業するためにプロダクトが動く仕組みを理解しよう
kawabeaver
0
390
DevIO2025_継続的なサービス開発のための技術的意思決定のポイント / how-to-tech-decision-makaing-devio2025
nologyance
1
390
Platform開発が先行する Platform Engineeringの違和感
kintotechdev
4
560
実践!カスタムインストラクション&スラッシュコマンド
puku0x
0
380
roppongirb_20250911
igaiga
1
220
Featured
See All Featured
How GitHub (no longer) Works
holman
315
140k
Bash Introduction
62gerente
615
210k
A better future with KSS
kneath
239
17k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
Designing for Performance
lara
610
69k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
Gamification - CAS2011
davidbonilla
81
5.4k
Producing Creativity
orderedlist
PRO
347
40k
A designer walks into a library…
pauljervisheath
207
24k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Transcript
Unsupervised Context-Sensitive Spelling Correction of Clinical Free-Text with Word and
Character N-Gram Embeddings Pieter Fivez, Simon Suster and Walter Daelemans Proceedings of the BioNLP 2017 workshop, pages 143–148. 文献紹介(2017/08/22) 自然言語処理研究室 小川 耀一朗 0
概要 l 臨床テキストのスペル訂正 l 分散表現(neural embeddings)を⽤いることで⽂脈を考 慮した訂正モデルを提案 l 既存のスペル訂正ツールよりも⼤幅に優れている 1
/ 9
目的 Ø 臨床テキスト l 医療現場における診察や治療に関する⽂章 l 専⾨⽤語が多い l 様々な略語、新しい名称が使われている l
10~15%がスペルミス[Patrick et al., 2010] →単純なスペル訂正よりも複雑 2 / 9
目的 Ø noisy channel model l 頻度情報(⾔語モデル)を⽤いて置換候補を選択 l ⽂脈情報を活⽤せず l
⽂脈情報を無視するとパフォーマンスに悪影響 [Flor, 2012] 分散表現を使って⽂脈の⼿がかりを訂正に利⽤ 3 / 9
候補生成 l スペルミスを正しい単語に置換するための候補を⽣成 • 編集距離(Damerau-Levenshtein edit distance)が2以下の単語 • 発⾳情報(Double Metaphone)の編集距離が1以下の単語
を単語辞書(UMLS®SPECIALIST lexicon and Jazzy)から抽出 [goint] → going(1), point(1), joint(1), groin(2) 編集距離:置換、挿⼊、削除、転置の操作を⾏う回数 発⾳情報:⼦⾳だけで発⾳を近似(goint→KNT) 4 / 9
候補のランク付け l スペルミスの⽂脈の合成ベクトルと各置換候補のベクトル とのコサイン類似度を計算しランク付け 5 各置換候補のベクトルを作成 going point joint groin
2つのコサイン類似度を計算 最も類似度の⾼い置換候補で訂正 スペルミスの⽂脈単語(9 window size) の合成ベクトルを作成 “new central line lower extremity bypass with sob now [goint] to be intubated” / 9
実験設定 Ø MIMIC-lll[Johnson et al., 2016] l 医療⽂章のデータベース Ø 分散表現の学習
l fastText(Word2Vecの拡張)のskipgramモデルを使⽤ l MIMIC-lllコーパスから425M語を学習 Ø テストデータ l MIMIC-lllからスペルミス873事例を抽出・アノテート 6 / 9
実験結果 7 Ø 既存の2つのツール、Noisy Channel Modelよりも⾼い正解率を⽰す HunSpell: 公開されているスペルチェッカー Lai et
al.: 従来⼿法 Context: 提案⼿法 Noisy Channel: 従来⼿法を再実装 off-the-shelf: 従来の単語辞書を⽤いて実験 with completed lexicon: ⾼度な医療の専⾨⽤語を単語辞書に追加 / 9
実験結果 l Noisy channelでは⾼頻度の”point”を選択してしまう l 本⼿法では⽂脈情報を活⽤することで正解の”going”を選択する 8 点の⼤きさ:コーパス中の頻度 数字:コサイン類似度 "new
central line lower extremity bypass with sob now [goint] to be intubated" / 9
まとめ l 臨床テキストのスペル訂正⼿法を提案 l 分散表現を⽤いて⽂脈情報を活⽤した訂正が可能となっ た l 既存のツールやNoisy Channel Modelよりも⾼い正解率
を⽰した 9 / 9