Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Unsupervised Context-Sensitive Spelling Correct...
Search
youichiro
August 22, 2017
Technology
0
180
Unsupervised Context-Sensitive Spelling Correction of Clinical Free-Text with Word and Character N-Gram Embeddings
文献紹介(2017年8月22日)
長岡技術科学大学
自然言語処理研究室
youichiro
August 22, 2017
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.6k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
100
Multi-Agent Dual Learning
youichiro
1
180
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
120
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
140
勉強勉強会
youichiro
0
88
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
190
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
170
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
200
Other Decks in Technology
See All in Technology
OCI Network Firewall 概要
oracle4engineer
PRO
2
7.9k
「AI駆動PO」を考えてみる - 作る速さから価値のスループットへ:検査・適応で未来を開発 / AI-driven product owner. scrummat2025
yosuke_nagai
3
830
ガバメントクラウドの概要と自治体事例(名古屋市)
techniczna
2
230
生成AIとM5Stack / M5 Japan Tour 2025 Autumn 東京
you
PRO
0
250
AI駆動開発を推進するためにサービス開発チームで 取り組んでいること
noayaoshiro
0
260
セキュアな認可付きリモートMCPサーバーをAWSマネージドサービスでつくろう! / Let's build an OAuth protected remote MCP server based on AWS managed services
kaminashi
3
300
Git in Team
kawaguti
PRO
3
350
AI時代だからこそ考える、僕らが本当につくりたいスクラムチーム / A Scrum Team we really want to create in this AI era
takaking22
8
4.1k
防災デジタル分野での官民共創の取り組み (2)DIT/CCとD-CERTについて
ditccsugii
0
220
LLMアプリの地上戦開発計画と運用実践 / 2025.10.15 GPU UNITE 2025
smiyawaki0820
1
440
Adapty_東京AI祭ハッカソン2025ピッチスライド
shinoyamada
0
270
プロポーザルのコツ ~ Kaigi on Rails 2025 初参加で3名の登壇を実現 ~
naro143
1
210
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Building Applications with DynamoDB
mza
96
6.7k
Side Projects
sachag
455
43k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Optimizing for Happiness
mojombo
379
70k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
Unsupervised Context-Sensitive Spelling Correction of Clinical Free-Text with Word and
Character N-Gram Embeddings Pieter Fivez, Simon Suster and Walter Daelemans Proceedings of the BioNLP 2017 workshop, pages 143–148. 文献紹介(2017/08/22) 自然言語処理研究室 小川 耀一朗 0
概要 l 臨床テキストのスペル訂正 l 分散表現(neural embeddings)を⽤いることで⽂脈を考 慮した訂正モデルを提案 l 既存のスペル訂正ツールよりも⼤幅に優れている 1
/ 9
目的 Ø 臨床テキスト l 医療現場における診察や治療に関する⽂章 l 専⾨⽤語が多い l 様々な略語、新しい名称が使われている l
10~15%がスペルミス[Patrick et al., 2010] →単純なスペル訂正よりも複雑 2 / 9
目的 Ø noisy channel model l 頻度情報(⾔語モデル)を⽤いて置換候補を選択 l ⽂脈情報を活⽤せず l
⽂脈情報を無視するとパフォーマンスに悪影響 [Flor, 2012] 分散表現を使って⽂脈の⼿がかりを訂正に利⽤ 3 / 9
候補生成 l スペルミスを正しい単語に置換するための候補を⽣成 • 編集距離(Damerau-Levenshtein edit distance)が2以下の単語 • 発⾳情報(Double Metaphone)の編集距離が1以下の単語
を単語辞書(UMLS®SPECIALIST lexicon and Jazzy)から抽出 [goint] → going(1), point(1), joint(1), groin(2) 編集距離:置換、挿⼊、削除、転置の操作を⾏う回数 発⾳情報:⼦⾳だけで発⾳を近似(goint→KNT) 4 / 9
候補のランク付け l スペルミスの⽂脈の合成ベクトルと各置換候補のベクトル とのコサイン類似度を計算しランク付け 5 各置換候補のベクトルを作成 going point joint groin
2つのコサイン類似度を計算 最も類似度の⾼い置換候補で訂正 スペルミスの⽂脈単語(9 window size) の合成ベクトルを作成 “new central line lower extremity bypass with sob now [goint] to be intubated” / 9
実験設定 Ø MIMIC-lll[Johnson et al., 2016] l 医療⽂章のデータベース Ø 分散表現の学習
l fastText(Word2Vecの拡張)のskipgramモデルを使⽤ l MIMIC-lllコーパスから425M語を学習 Ø テストデータ l MIMIC-lllからスペルミス873事例を抽出・アノテート 6 / 9
実験結果 7 Ø 既存の2つのツール、Noisy Channel Modelよりも⾼い正解率を⽰す HunSpell: 公開されているスペルチェッカー Lai et
al.: 従来⼿法 Context: 提案⼿法 Noisy Channel: 従来⼿法を再実装 off-the-shelf: 従来の単語辞書を⽤いて実験 with completed lexicon: ⾼度な医療の専⾨⽤語を単語辞書に追加 / 9
実験結果 l Noisy channelでは⾼頻度の”point”を選択してしまう l 本⼿法では⽂脈情報を活⽤することで正解の”going”を選択する 8 点の⼤きさ:コーパス中の頻度 数字:コサイン類似度 "new
central line lower extremity bypass with sob now [goint] to be intubated" / 9
まとめ l 臨床テキストのスペル訂正⼿法を提案 l 分散表現を⽤いて⽂脈情報を活⽤した訂正が可能となっ た l 既存のツールやNoisy Channel Modelよりも⾼い正解率
を⽰した 9 / 9