Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
resize_nitpick
Search
yoya
November 15, 2019
Technology
1
150
resize_nitpick
画像リサイズの重箱の隅を突く話 (前半)
yoya
November 15, 2019
Tweet
Share
More Decks by yoya
See All by yoya
ImageFluxBinary
yoya
2
2.8k
HEIF-kaisetsu
yoya
4
3.3k
go-thumber-imagick
yoya
1
180
chokaizomae
yoya
2
570
wildimagebinary
yoya
1
220
goimagicksyokai
yoya
2
1.1k
GoImagickThumbnail
yoya
0
1.6k
sushigazou
yoya
0
12k
twitterimgupload
yoya
0
380
Other Decks in Technology
See All in Technology
20250905_MeetUp_Ito-san_s_presentation.pdf
magicpod
1
100
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
2
320
「Linux」という言葉が指すもの
sat
PRO
4
140
2025/09/16 仕様駆動開発とAI-DLCが導くAI駆動開発の新フェーズ
masahiro_okamura
0
140
ブロックテーマ時代における、テーマの CSS について考える Toro_Unit / 2025.09.13 @ Shinshu WordPress Meetup
torounit
0
130
AWSを利用する上で知っておきたい名前解決のはなし(10分版)
nagisa53
10
3.2k
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
280
いま注目のAIエージェントを作ってみよう
supermarimobros
0
360
LLM時代のパフォーマンスチューニング:MongoDB運用で試したコンテキスト活用の工夫
ishikawa_pro
0
170
RSCの時代にReactとフレームワークの境界を探る
uhyo
11
3.5k
まずはマネコンでちゃちゃっと作ってから、それをCDKにしてみよか。
yamada_r
2
120
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
350
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
96
6.2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Scaling GitHub
holman
463
140k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
113
20k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
BBQ
matthewcrist
89
9.8k
Transcript
画像リサイズの重箱の 隅を突く話 (前半) 2019/11/15(⾦) “よや” <
[email protected]
>
⾃⼰紹介 • twitter.com/yoya • github.com/yoya • ImageMagick ウォッチャー(⾃称) • 画像リサイズのうんちく
(今回のネタ下) • https://qiita.com/yoya/items/95c37e02762431b1abf0
発表のきっかけ https://twitter.com/yoya/status/1192667961934278656
サムネール⽣成のうんちく(仮)から抜粋 • 画像リサイズ処理 • ⾊々 • アスペクト⽐ • メタデータ •
画像の回転 (orientation) • サムネール 画像 • GPS位置情報 • 撮影情報(カメラ型番や設定など • ⾊空間 ࠓίϨ
画像リサイズの処理⽅式 • 補間フィルタ • フィルタの種類 • セパラブルの順序 • フィルタのカーネル粒度 •
オフセット (コーナー合わせ) • エッジ処理 • 次回予定 • ビット深度 • ガンマ補正 • USM (unsharp mask) • パレット⾊保持 ࠓ͜͜·Ͱ
知る事のメリット • 任意の画像処理エンジンと厳密に⼀致させる処理が⾃作できる (かもしれない) • ⾃分の⽤途にあった改造ができる • 画像サービスの使ってる画像エンジンを推測できる • バージョンまである程度絞れる(かもしれない)
補間フィルタ • リサイズ結果が違う場合、⼤抵これが原因 • 拡⼤してできる隙間をどう埋めるか => 補間フィルタ ϐΫηϧΛ͛Δ 伱ؒΛຒΊΔ
補間フィルタ • 縮⼩の場合、どのように混ぜるか ϐΫηϧΛߥ͘͢Δ ࠞͥΔ
補間フィルタの種類 • よく使われるのは以下の4つ • NearestNeighbor • Bi-Linear • Bi-Cubic •
Catmul-Rom (B:0, C:1/2) • Mitchell (B:1/3, C:1/3) • Lanczos (Lobe:3,4) この辺は常識なので説明省略! https://en.wikipedia.org/wiki/Bicubic_interpolation
補間フィルタ (セパラブル) • 2次元のフィルタを縦と横で分けて処理できる
補間フィルタ (セパラブル) • 良いといっても、計算機誤差からの差異は⽣じる • 左が実験画像、真ん中は横=>縦の順。右は縦=>横の順、差分強調
補間フィルタ (セパラブル) • 横を先に処理して、次に縦 (Python-Pillow) • メモリは横の⽅が局所的アクセスできる • より縮⼩率の⾼い⽅を先に処理する (ImageMagick
5以降) • なるべく途中の画像が⼩さくなるように • 縦が広がる場合は横を先に処理する (ImageMagick 4以前) • アスペクト⽐で判断
補間フィルタ (カーネル粒度) • 補間フィルタのカーネル計算が重たいケースがある -BODPT ͳΜͯ ΊͬͪΌॏ͍ͨ ⼀度、計算した結果を LUT(lookup table)
に保存して、 これを元に畳み込み計算する
補間フィルタ (カーネル粒度) • ImageMagick では 0.01 刻みの LUT を持つ •
OpenCV はリサイズ後の画像サイズの LUT • FFmpeg swscale は dstW/srcW (+α) の LUT
補間フィルタ (オフセット) • ピクセルの広げ⽅にも種類がある ࠨ্߹Θͤ ਅΜத߹Θͤ ࢛۱߹Θͤ DPSOFS@BMJHOFE PGGTFU OBJWF
͍͍ͩͨίϨ
補間フィルタ (オフセット) • Pillow(PIL) の動きがバージョンで異なる • https://qiita.com/yoya/items/3b4a8080516259ece684 1JMMPXҎલ ݄ 1JMMPXҎ߱
݄
補間フィルタ (オフセット) • Pillow-3.3.3以前 Pillow-3.4.0以降
補間フィルタ (エッジの畳み込み) • Bi-Linearを含む⼤抵のフィルタは混ぜる範囲が画像の外を巻き 込む ࠞͥΔ
補間フィルタ (エッジの畳み込み) • ImageMagick, PIL(Pillow) • 画像の外を無視する • 画像の中だけで畳み込む •
畳み込みが中途半端 ը૾ ͷ֎ 255 0 0 x0.75 x0.75 *0.25 191/(0.75+0.75+0.25) =191 =0 =0 = 109 *0.25
補間フィルタ (エッジの畳み込み) • OpenCV • エッジの⾊が外に続く仮定 255 0 0 x0.75
x0.75 *0.25 =191 =0 =0 = 127 255 *0.25 =63 ը૾ ͷ֎ ͖ͬ͞ͷ ΑΓ ໌Δ͍ (63+191)/(0.25+0.75+0.75+0.25)
補間フィルタ (エッジの畳み込み) • 本来、画像の外側の仮定によってリサイズ結果を変えるべき &EHF3FQFBUFE 3FGMFDU NJSSPS 5JMJOH
まとめ • リサイズの実装アルゴリズムは選択肢が多くある • これらの組み合わせから、サムネール画像を⾒て処理に使った 画像エンジンを推測する事ができる。(かもしれない)
次回予告 • 次回予定 • ビット深度 • ガンマ補正 • USM (unsharp
mask) • パレット⾊保持