統計的学習の基礎 - 4章 / castella-book-chap4

D490d541e3d1ab04d5203e8b210b2233?s=47 ysekky
May 16, 2017

統計的学習の基礎 - 4章 / castella-book-chap4

D490d541e3d1ab04d5203e8b210b2233?s=128

ysekky

May 16, 2017
Tweet

Transcript

  1. 4.

    境界を線形として明示的にモデル化する場合 • パーセプトロン ◦ 訓練データを分離する超平面が存在すれば、それを求めることができる • Vapnik(1996)の方法 ◦ 分離超平面が存在する場合 ▪

    二クラスを分類する最適な超平面が得られる ◦ 分離超平面が存在しない場合 ▪ 訓練データの重なりの程度を表す尺度を最小にする超平面が得られる 本章では分離可能な場合のみを扱い 分離不可能な場合については 12章で扱う
  2. 5.

    4.2 指示行列の線形回帰 • 出力となるカテゴリは指示変数を介して符号化されるとする ◦ K個のクラスにわけられる ◦ G=kならY_k=1をとり、それ以外は0になる ◦ K次元のベクトルYとしてまとめられる

    ◦ N個の訓練データに対して作った Yをまとめると、N✕Kの行列が得られる。これを指示応答行列 Yと 呼ぶ。 Yの各列に対して線形モデルを当てはめると、予測値は以下のようになる
  3. 10.

    4.3 線形判別分析 • クラス事後確率のモデル化 • 様々な手法でクラス密度が利用されている ◦ 線形及び2次の判別分析ではガウス密度 ◦ 混合ガウス分布を用いると非線形に決定境界が得られる(

    6.8節) ◦ クラス密度に対するノンパラメトリック密度推定は適用性が高い (6.6.2項) ◦ ナイーブベイズはノンパラメトリック密度推定の変形であり、クラス密度が周辺密度の積で表される ことを仮定する(6.6.3項)
  4. 20.
  5. 25.