Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Gunosy研究会]データ解析のための統計モデリング6章(前篇)
Search
ysekky
September 29, 2014
Research
2
430
[Gunosy研究会]データ解析のための統計モデリング6章(前篇)
ysekky
September 29, 2014
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.2k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.7k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.1k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
780
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.9k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.4k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Research
See All in Research
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
250
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
230
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
8.8k
CoRL2025速報
rpc
1
2k
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
190
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
160
投資戦略202508
pw
0
570
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
260
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
140
A scalable, annual aboveground biomass product for monitoring carbon impacts of ecosystem restoration projects
satai
4
350
Remote sensing × Multi-modal meta survey
satai
4
490
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
680
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.2k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
The World Runs on Bad Software
bkeepers
PRO
72
11k
Thoughts on Productivity
jonyablonski
70
4.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
The Language of Interfaces
destraynor
162
25k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
189
55k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
35
6.1k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
データ解析のための統計モデリング入門 6章 GLMの応用範囲を広げる (6.1 ~ 6.5) Yoshifumi Seki
(Gunosy Inc) 2014.09.30@Gunosy研究会
これまでのおさらい • ポアソン分布・対数リンク関数のGLMを題材 に – どのようにデータからモデルを作るか – どのように良いモデルを選ぶか – どうしたらモデルが本当に良いことがわかるか?
本章でやること • さまざまなGLMを取り扱う – 確率分布・リンク関数・線形予測子を組み合わせ る • ロジステック回帰
• ポアソン回帰(次回) • 正規分布、ガンマ分布(次回) – 交互作用項 – オフセット項(次回)
GLMのよく使われる組み合わせ 分布 リンク関数 特性 二項分布 logit 離散・上限あり ポアソン分布 log 離散・上限なし
ガンマ分布 log(正準リンク関数はinverseだが 使いにくい) 連続値・ゼロ以上 正規分布 indenGty 連続値
例題: 上限のあるカウントデータ • ある架空植物の個体iそれぞれにおいて – Ni個の観察種子の打ち生きているのはyi個 • Niはどの個体でも8個
• 全部で100個の個体を調べる – 個体サイズ: xi – 肥料を与えたかどうか: fi • 与えていたらfi=T, 与えていなければfi=C
• サイズが大きくなると生存する種子の 数が多くなる • 肥料をやると生存種子数が多くなる
二項分布で表現するカウントデータ • N個のうちy個が生存していたという構造のカ ウントデータ – 上限が存在する離散値 • ポアソン分布のときは上限がどこにあるかわ からないデータ
• n=1, y=[0, 1]のときをベルヌーイ分布と呼ぶ
ロジスティック回帰とロジット関数 • ロジスティック関数 ロジット関数はロジスティック関数の逆関数
パラメータ推定 • 尤度関数 • 最尤推定する – R •
glm(cbind(y, N-‐y)~ x+f, data=d, family=binomial) – 同様にAICでモデル選択可能
ロジット関数の意味・解釈 • ロジット関数と線形予測子 – 左辺をオッズと呼ぶ – どのぐらい増えたらオッズがどれだけ増えるかを 示す
交互作用項 • 交互作用項 – 例題: x_iとf_iの積 – R
• glm(cbind(y, N-‐y)~ x*f, data=d, family=binomial) – x*fはx+y+x:fを省略している • むやみに入れないほうが良い – 交互作用項をいれてAICが改善しても、過大評価して いることが多い – 個体差・場所差によるばらつきの影響の可能性が高 い • 7章以降で説明するモデルを使えば、交互作用項の見かけ 上の影響は消える
割り算値のモデリングをやめよう • なぜわざわざ二項分布のモデルを使った か? – 情報が失われる • 1000打数300安打の打者と100打数30安打の打者を 同等に評価してよいのか?
– 変換された情報がどのような分布に従うのかわ からなくなる