Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Gunosy研究会]データ解析のための統計モデリング6章(前篇)
Search
ysekky
September 29, 2014
Research
2
440
[Gunosy研究会]データ解析のための統計モデリング6章(前篇)
ysekky
September 29, 2014
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.3k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.8k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.2k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
800
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.9k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.6k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.4k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Research
See All in Research
CoRL2025速報
rpc
4
3.8k
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
320
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.1k
データサイエンティストの業務変化
datascientistsociety
PRO
0
150
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
490
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
120
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
310
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.8k
湯村研究室の紹介2025 / yumulab2025
yumulab
0
280
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
800
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
190
Featured
See All Featured
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
220
Skip the Path - Find Your Career Trail
mkilby
0
42
Designing for Performance
lara
610
70k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
110
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
150
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Designing for humans not robots
tammielis
254
26k
Testing 201, or: Great Expectations
jmmastey
46
7.9k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
730
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
94
Transcript
データ解析のための統計モデリング入門 6章 GLMの応用範囲を広げる (6.1 ~ 6.5) Yoshifumi Seki
(Gunosy Inc) 2014.09.30@Gunosy研究会
これまでのおさらい • ポアソン分布・対数リンク関数のGLMを題材 に – どのようにデータからモデルを作るか – どのように良いモデルを選ぶか – どうしたらモデルが本当に良いことがわかるか?
本章でやること • さまざまなGLMを取り扱う – 確率分布・リンク関数・線形予測子を組み合わせ る • ロジステック回帰
• ポアソン回帰(次回) • 正規分布、ガンマ分布(次回) – 交互作用項 – オフセット項(次回)
GLMのよく使われる組み合わせ 分布 リンク関数 特性 二項分布 logit 離散・上限あり ポアソン分布 log 離散・上限なし
ガンマ分布 log(正準リンク関数はinverseだが 使いにくい) 連続値・ゼロ以上 正規分布 indenGty 連続値
例題: 上限のあるカウントデータ • ある架空植物の個体iそれぞれにおいて – Ni個の観察種子の打ち生きているのはyi個 • Niはどの個体でも8個
• 全部で100個の個体を調べる – 個体サイズ: xi – 肥料を与えたかどうか: fi • 与えていたらfi=T, 与えていなければfi=C
• サイズが大きくなると生存する種子の 数が多くなる • 肥料をやると生存種子数が多くなる
二項分布で表現するカウントデータ • N個のうちy個が生存していたという構造のカ ウントデータ – 上限が存在する離散値 • ポアソン分布のときは上限がどこにあるかわ からないデータ
• n=1, y=[0, 1]のときをベルヌーイ分布と呼ぶ
ロジスティック回帰とロジット関数 • ロジスティック関数 ロジット関数はロジスティック関数の逆関数
パラメータ推定 • 尤度関数 • 最尤推定する – R •
glm(cbind(y, N-‐y)~ x+f, data=d, family=binomial) – 同様にAICでモデル選択可能
ロジット関数の意味・解釈 • ロジット関数と線形予測子 – 左辺をオッズと呼ぶ – どのぐらい増えたらオッズがどれだけ増えるかを 示す
交互作用項 • 交互作用項 – 例題: x_iとf_iの積 – R
• glm(cbind(y, N-‐y)~ x*f, data=d, family=binomial) – x*fはx+y+x:fを省略している • むやみに入れないほうが良い – 交互作用項をいれてAICが改善しても、過大評価して いることが多い – 個体差・場所差によるばらつきの影響の可能性が高 い • 7章以降で説明するモデルを使えば、交互作用項の見かけ 上の影響は消える
割り算値のモデリングをやめよう • なぜわざわざ二項分布のモデルを使った か? – 情報が失われる • 1000打数300安打の打者と100打数30安打の打者を 同等に評価してよいのか?
– 変換された情報がどのような分布に従うのかわ からなくなる