Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Gunosy研究会]データ解析のための統計モデリング6章(前篇)
Search
ysekky
September 29, 2014
Research
2
440
[Gunosy研究会]データ解析のための統計モデリング6章(前篇)
ysekky
September 29, 2014
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.3k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.8k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.1k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
790
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.9k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.4k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Research
See All in Research
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
570
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
430
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
440
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
6.3k
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
250
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.4k
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
490
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
160
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
110
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
Facilitating Awesome Meetings
lara
57
6.7k
Git: the NoSQL Database
bkeepers
PRO
432
66k
The Invisible Side of Design
smashingmag
302
51k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
4 Signs Your Business is Dying
shpigford
186
22k
Statistics for Hackers
jakevdp
799
230k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Transcript
データ解析のための統計モデリング入門 6章 GLMの応用範囲を広げる (6.1 ~ 6.5) Yoshifumi Seki
(Gunosy Inc) 2014.09.30@Gunosy研究会
これまでのおさらい • ポアソン分布・対数リンク関数のGLMを題材 に – どのようにデータからモデルを作るか – どのように良いモデルを選ぶか – どうしたらモデルが本当に良いことがわかるか?
本章でやること • さまざまなGLMを取り扱う – 確率分布・リンク関数・線形予測子を組み合わせ る • ロジステック回帰
• ポアソン回帰(次回) • 正規分布、ガンマ分布(次回) – 交互作用項 – オフセット項(次回)
GLMのよく使われる組み合わせ 分布 リンク関数 特性 二項分布 logit 離散・上限あり ポアソン分布 log 離散・上限なし
ガンマ分布 log(正準リンク関数はinverseだが 使いにくい) 連続値・ゼロ以上 正規分布 indenGty 連続値
例題: 上限のあるカウントデータ • ある架空植物の個体iそれぞれにおいて – Ni個の観察種子の打ち生きているのはyi個 • Niはどの個体でも8個
• 全部で100個の個体を調べる – 個体サイズ: xi – 肥料を与えたかどうか: fi • 与えていたらfi=T, 与えていなければfi=C
• サイズが大きくなると生存する種子の 数が多くなる • 肥料をやると生存種子数が多くなる
二項分布で表現するカウントデータ • N個のうちy個が生存していたという構造のカ ウントデータ – 上限が存在する離散値 • ポアソン分布のときは上限がどこにあるかわ からないデータ
• n=1, y=[0, 1]のときをベルヌーイ分布と呼ぶ
ロジスティック回帰とロジット関数 • ロジスティック関数 ロジット関数はロジスティック関数の逆関数
パラメータ推定 • 尤度関数 • 最尤推定する – R •
glm(cbind(y, N-‐y)~ x+f, data=d, family=binomial) – 同様にAICでモデル選択可能
ロジット関数の意味・解釈 • ロジット関数と線形予測子 – 左辺をオッズと呼ぶ – どのぐらい増えたらオッズがどれだけ増えるかを 示す
交互作用項 • 交互作用項 – 例題: x_iとf_iの積 – R
• glm(cbind(y, N-‐y)~ x*f, data=d, family=binomial) – x*fはx+y+x:fを省略している • むやみに入れないほうが良い – 交互作用項をいれてAICが改善しても、過大評価して いることが多い – 個体差・場所差によるばらつきの影響の可能性が高 い • 7章以降で説明するモデルを使えば、交互作用項の見かけ 上の影響は消える
割り算値のモデリングをやめよう • なぜわざわざ二項分布のモデルを使った か? – 情報が失われる • 1000打数300安打の打者と100打数30安打の打者を 同等に評価してよいのか?
– 変換された情報がどのような分布に従うのかわ からなくなる