Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Gunosy研究会]Personalized Collaborative Clustering
Search
ysekky
April 10, 2014
Research
1
1.4k
[Gunosy研究会]Personalized Collaborative Clustering
ysekky
April 10, 2014
Tweet
Share
More Decks by ysekky
See All by ysekky
スタートアップの開発サイクルに学ぶ 研究活動の進め方 / research practices inspired by startup business strategy
ysekky
0
2.2k
[論文紹介] A Method to Anonymize Business Metrics to Publishing Implicit Feedback Datasets (Recsys2020) / recsys20-reading-gunosy-datapub
ysekky
3
2.7k
JSAI2020 OS-12 広告とAI オープニング / JSAI2020-OS-12-ads-and-ai-opening
ysekky
0
2.1k
JSAI2020インダストリアルセッション - Gunosyにおける研究開発 / jsai2020-gunosy-rd-examples
ysekky
1
780
ウェブサービス事業者における研究開発インターン[株式会社Gunosy] - テキストアナリティクスシンポジウム2019 / research-intern-case-study-at-gunosy
ysekky
0
2.8k
Gunosyにおけるニュース記事推薦/ news-recommendation-in-gunosy-webdbf2019
ysekky
1
1.5k
DEIM2019技術報告セッション - Gunosyの研究開発 / deim-2019-sponsor-session-gunosy-research
ysekky
0
1.2k
Analysis of Bias in Gathering Information Between User Attributes in News Application (ABCCS 2018)
ysekky
1
2.3k
世代による政治ニュース記事の閲覧傾向の違いの分析 - JSAI2018 / Analysis of differences in viewing behavior of politics news by age
ysekky
0
4k
Other Decks in Research
See All in Research
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
490
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
580
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
610
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
290
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
510
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
300
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
480
20250725-bet-ai-day
cipepser
2
420
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
0
170
IMC の細かすぎる話 2025
smly
2
620
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
7
4k
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.9k
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Side Projects
sachag
455
43k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Docker and Python
trallard
45
3.6k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
A better future with KSS
kneath
239
17k
Scaling GitHub
holman
463
140k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
We Have a Design System, Now What?
morganepeng
53
7.8k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
The Invisible Side of Design
smashingmag
301
51k
Transcript
論文紹介: Personalized Collabora0ve Clustering Yisong Yue, Ching Wang, Khalid
El-‐Arini, Carlos Guestrin WWW 2014 Yoshifumi Seki@Gunosy研究会 2014.04.02
クラスタリングの基準は人によって異なる スポーツ系 時代劇系 ホモ 萌え
目的 • クラスタリングをユーザごとに最適化したい – あるアイテムをどのように分類するかはユーザに よって異なる – ユーザごとにモデルをつくろうとするとユーザごと に多くのデータ量が必要になる
• あるユーザにとってのアイテム同士の類似度 を他のユーザのクラスタも含めて推測する – 協調フィルタリングのように定式化する
やっていること • アイテムの特徴量と、ユーザごとのアイテム 間類似度計算行列を、教師データから学習 する – 教師データはユーザが何と何を同一クラスタとし て、何と何を同一クラスタとしなかったか – アイテムの特徴量はD次元で共通化。
– 類似度計算行列をユーザごとに設計することで ユーザごとにクラスタリングの基準を変える
教師データ • 対象 – M人のユーザ (u1 ~ uM)
• 各ユーザがCm個のクラスタを持つ – N個のアイテム • クラスタ – y = {ym} (1): 各ユーザごとのクラスタ集合 • ym = {Ym^1,…, Ym^Cm} (2): ユーザmのクラスタ集合 • Ym^i: ユーザmのクラスタiのアイテム集合 • 表現方法 – y_{m,i,j} • ユーザmにおいてアイテムi, jが同じクラスタ=> 1 • アイテムi, jが同じクラスタにない=> -‐1
定式化 • F(m, i, Ym^c) = mean{F(m, i, j) :
j∈Ym^c} (3) – F: 類似度計算関数 – アイテムiとクラスタcの類似度はそのクラスタに属 するアイテムとの類似度の平均 • c_mi = argmax F(m, I, Ym^c) (4) – 類似度が最も大きいものを所属クラスタとする • p(i|m, ym) – c_mi if F(m, I, Ym^{c_mi}) > 0 – 新しいクラスタ or クラスタに属しない if otherwise
学習 X: 各アイテムの特徴ベクトル。D次元 Um: ユーザmの類似度計算用行列. D*D b: パラメータ 具体的な最適化式は論文のAppendixを参照
求めたいもの 最適化するもの 正規化項 誤差項
実験 • 250のパリの観光地を218人のユーザにクラ スタリングをさせた – 1ユーザあたり4.5個のクラスタができた – 18.7個のアイテムが1クラスタにはある •
125ユーザでパラメータ調整, 50ユーザでバリ デーション, 43ユーザで評価
実験 • Hold 50% – 50%のアイテムをクラスタ済みのものとして残りの50%を 予測 –
目的: 一般的な精度検証 • Hold 25% per Cluster – 25%のアイテムを各クラスタから除いてモデルをつくって 評価 – 目的: 各クラスタのデータを欠損させた時の検証 • Hold One Cluster – 一つのクラスタを取り除いて評価する – 目的: クラスタの情報がない中で他のユーザの情報から 再現できるかの検証
比較手法 • Feature-‐based Model – zは各item固有のfeature, Vはfeatureの次元数分 ある。Vとbを学習する •
Transeformed Feature-‐based Model – VはD次元, Sにより次元圧縮をする • Augmented LCC Model
Features • Feature1 – 建物のWikipediaの記事から獲得したTF-‐IDFスコ ア • Feature2
– クラウドソーシングでつけたタグ – 39種から付けさせた
比較結果 • 提案モデルがもっとも精度が高い • Featureとの混合モデルの精度が低い • Featureが貢献しなかった理由
• Feature1:次元数が大きすぎる(単語数分次元がある) • Feature2:ユーザの意志をくみとるにはタグは十分では ない • データが非常にスパースである
パラメータの学習 • 目標としている精度に対してチューニングすると、その 精度に最適化される • そのためタスクに応じてパラメータチューニングの方法 は変えるべき
逐次的に学習させる
まとめ • ユーザごとのクラスタリングを他のユーザの情報と組みあ わせて潜在変数を学習することで最適化することができて いる – 未知のクラスタを推定できるのは非常に興味深い •
ただ協調フィルタリングと同等の課題は抱えていると考え られる – 新規アイテムや新規ユーザには活用できない、各アイテムに 十分な評価データがないといけないなど協調フィルタリングと 同じような課題はある – コンテンツ情報とのハイブリッドはシンプルな方法では無理。工 夫が必要。 • アイテム数やクラスタ数が大きくなるととてもつらくなりそう