Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
情報マイニング特論 輪講資料「詳細釣り合い条件」
Search
Yumeto Inaoka
December 08, 2018
Technology
0
170
情報マイニング特論 輪講資料「詳細釣り合い条件」
2018年12月7日の情報マイニング特論で発表。
Yumeto Inaoka
December 08, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
150
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
200
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
130
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
140
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
120
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
240
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
300
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
200
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
200
Other Decks in Technology
See All in Technology
Share my, our lessons from the road to re:Invent
naospon
0
130
Visualize, Visualize, Visualize and rclone
tomoaki0705
9
74k
ビジネスモデリング道場 目的と背景
masuda220
PRO
9
690
【内製開発Summit 2025】イオンスマートテクノロジーの内製化組織の作り方/In-house-development-summit-AST
aeonpeople
1
460
RemoveだらけのPHPUnit 12に備えよう
cocoeyes02
0
120
Amazon Aurora のバージョンアップ手法について
smt7174
1
110
Exadata Database Service on Cloud@Customer セキュリティ、ネットワーク、および管理について
oracle4engineer
PRO
2
1.5k
短縮URLをお手軽に導入しよう
nakasho
0
130
OpenID Connect for Identity Assurance の概要と翻訳版のご紹介 / 20250219-BizDay17-OIDC4IDA-Intro
oidfj
0
460
【詳説】コンテンツ配信 システムの複数機能 基盤への拡張
hatena
0
180
人はなぜISUCONに夢中になるのか
kakehashi
PRO
6
1.7k
白金鉱業Meetup Vol.17_あるデータサイエンティストのデータマネジメントとの向き合い方
brainpadpr
7
990
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
175
52k
Optimizing for Happiness
mojombo
376
70k
Faster Mobile Websites
deanohume
306
31k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
21
2.5k
Producing Creativity
orderedlist
PRO
344
40k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
A Tale of Four Properties
chriscoyier
158
23k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Building Adaptive Systems
keathley
40
2.4k
Transcript
4.4 詳細釣り合い条件 稲岡 夢人
前回は・・・ 遷移核から定常分布を求めた 実際は・・・ 事後分布に従う乱数が欲しい → 事後分布が定常分布になるような遷移核を導く 2
マルコフ連鎖モンテカルロ法 (Markov chain MonteCarlo methods; MCMC) サンプリングしたい分布が定常分布となるような マルコフ連鎖を構成する方法 (遷移核を見つける) サンプリングしたい分布を目標分布という
今回の目標分布は事後分布(既知) 3
遷移核の導出において • 遷移核によっては定常分布をもたない • 今回は定常分布を持つような遷移核が欲しい → どのような条件下だと定常分布に収束するか 4
詳細釣り合い条件 マルコフ連鎖が定常分布に収束する十分条件 標本空間の全ての事象の組i, jに関して 式(4.13) が満たされるときマルコフ連鎖は定常分布に収束 ネクタイ問題はこれを満たす 式(4.14) ~ (4.16) 5
詳細釣り合い条件 マルコフ連鎖が定常分布に収束する十分条件 ◦ 詳細釣り合い条件を満たすように遷移核を 選べば必ず定常分布に収束する × 定常分布に収束するような遷移核は必ず 詳細釣り合い条件を満たす 6
詳細釣り合い条件の意味 両辺を添え字iに関して和を取る 左辺シグマ内の総和は1 7
詳細釣り合い条件の意味 式(4.11)と見かけ上は同じだが、式(4.11)は 遷移の途中であっても成り立つ恒等式 上式は目標分布 と が同一の分布 である制約の下で遷移核 に成り立つ条件式 8
連続型確率変数での詳細釣り合い条件 離散型の場合は全ての事象の組i, jで成立を確認 連続型の場合は任意の2点θ, θ’で成立を確認する 必要がある 9
詳細釣り合い条件のイメージ f(θ’) : f(θ) = 1:a とすると f(θ|θ’) : f(θ’|θ)=a:1 10 0
5 0.5 θ θ’ f(θ’|θ) f(θ|θ’) f()
詳細釣り合い条件 結果としてθに移動してくる確率密度f(θ)は、 11 発射地点θ’からθに飛んでくる確率密度の あらゆる発射地点に関する平均確率密度が θの確率密度となる → f(θ)の大きさに比例してθに飛んでくる
詳細釣り合い条件 初期状態を中心部から遠くにとっても、 乱数列は中心部へ急速に引き寄せられる 12 0 50 0.5 θ θ’ f(θ’|θ)
f(θ|θ’) f()