Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
情報マイニング特論 輪講資料「詳細釣り合い条件」
Search
Yumeto Inaoka
December 08, 2018
Technology
0
230
情報マイニング特論 輪講資料「詳細釣り合い条件」
2018年12月7日の情報マイニング特論で発表。
Yumeto Inaoka
December 08, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Technology
See All in Technology
技術広報のOKRで生み出す 開発組織への価値 〜 カンファレンス協賛を通して育む学びの文化 〜 / Creating Value for Development Organisations Through Technical Communications OKRs — Nurturing a Culture of Learning Through Conference Sponsorship —
pauli
5
550
『星の世界の地図の話: Google Sky MapをAI Agentでよみがえらせる』 - Google Developers DevFest Tokyo 2025
taniiicom
0
350
スタートアップの事業成長を支えるアーキテクチャとエンジニアリング
doragt
1
7.9k
改竄して学ぶコンテナサプライチェーンセキュリティ ~コンテナイメージの完全性を目指して~/tampering-container-supplychain-security
mochizuki875
1
400
重厚長大企業で、顧客価値をスケールさせるためのプロダクトづくりとプロダクト開発チームづくりの裏側 / Developers X Summit 2025
mongolyy
0
200
AI駆動開発2025年振り返りとTips集
knr109
1
110
不確実性に備える ABEMA の信頼性設計とオブザーバビリティ基盤
nagapad
4
7.8k
レガシーで硬直したテーブル設計から変更容易で柔軟なテーブル設計にする
red_frasco
4
590
国産クラウドを支える設計とチームの変遷 “技術・組織・ミッション”
kazeburo
5
8.9k
単一Kubernetesクラスタで実現する AI/ML 向けクラウドサービス
pfn
PRO
1
370
LINEヤフー バックエンド組織・体制の紹介
lycorptech_jp
PRO
0
850
生成AIシステムとAIエージェントに関する性能や安全性の評価
shibuiwilliam
1
150
Featured
See All Featured
A Tale of Four Properties
chriscoyier
162
23k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
52
Rails Girls Zürich Keynote
gr2m
95
14k
Side Projects
sachag
455
43k
For a Future-Friendly Web
brad_frost
180
10k
We Have a Design System, Now What?
morganepeng
54
7.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Building Adaptive Systems
keathley
44
2.8k
It's Worth the Effort
3n
187
29k
Transcript
4.4 詳細釣り合い条件 稲岡 夢人
前回は・・・ 遷移核から定常分布を求めた 実際は・・・ 事後分布に従う乱数が欲しい → 事後分布が定常分布になるような遷移核を導く 2
マルコフ連鎖モンテカルロ法 (Markov chain MonteCarlo methods; MCMC) サンプリングしたい分布が定常分布となるような マルコフ連鎖を構成する方法 (遷移核を見つける) サンプリングしたい分布を目標分布という
今回の目標分布は事後分布(既知) 3
遷移核の導出において • 遷移核によっては定常分布をもたない • 今回は定常分布を持つような遷移核が欲しい → どのような条件下だと定常分布に収束するか 4
詳細釣り合い条件 マルコフ連鎖が定常分布に収束する十分条件 標本空間の全ての事象の組i, jに関して 式(4.13) が満たされるときマルコフ連鎖は定常分布に収束 ネクタイ問題はこれを満たす 式(4.14) ~ (4.16) 5
詳細釣り合い条件 マルコフ連鎖が定常分布に収束する十分条件 ◦ 詳細釣り合い条件を満たすように遷移核を 選べば必ず定常分布に収束する × 定常分布に収束するような遷移核は必ず 詳細釣り合い条件を満たす 6
詳細釣り合い条件の意味 両辺を添え字iに関して和を取る 左辺シグマ内の総和は1 7
詳細釣り合い条件の意味 式(4.11)と見かけ上は同じだが、式(4.11)は 遷移の途中であっても成り立つ恒等式 上式は目標分布 と が同一の分布 である制約の下で遷移核 に成り立つ条件式 8
連続型確率変数での詳細釣り合い条件 離散型の場合は全ての事象の組i, jで成立を確認 連続型の場合は任意の2点θ, θ’で成立を確認する 必要がある 9
詳細釣り合い条件のイメージ f(θ’) : f(θ) = 1:a とすると f(θ|θ’) : f(θ’|θ)=a:1 10 0
5 0.5 θ θ’ f(θ’|θ) f(θ|θ’) f()
詳細釣り合い条件 結果としてθに移動してくる確率密度f(θ)は、 11 発射地点θ’からθに飛んでくる確率密度の あらゆる発射地点に関する平均確率密度が θの確率密度となる → f(θ)の大きさに比例してθに飛んでくる
詳細釣り合い条件 初期状態を中心部から遠くにとっても、 乱数列は中心部へ急速に引き寄せられる 12 0 50 0.5 θ θ’ f(θ’|θ)
f(θ|θ’) f()