Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Learning To Split and Rephrase From Wikip...
Search
Yumeto Inaoka
November 21, 2018
Research
0
200
文献紹介: Learning To Split and Rephrase From Wikipedia Edit History
2018/11/21の文献紹介で発表
Yumeto Inaoka
November 21, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
180
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
230
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
170
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
150
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
280
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
340
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
220
Other Decks in Research
See All in Research
NLP2025参加報告会 LT資料
hargon24
1
340
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
14
9.5k
Delta Airlines® Customer Care in the U.S.: How to Reach Them Now
bookingcomcustomersupportusa
0
110
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
14
6.4k
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
1.1k
電力システム最適化入門
mickey_kubo
1
790
EarthMarker: A Visual Prompting Multimodal Large Language Model for Remote Sensing
satai
3
390
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
140
数理最適化と機械学習の融合
mickey_kubo
15
9.1k
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
1k
Self-supervised audiovisual representation learning for remote sensing data
satai
3
250
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
420
Featured
See All Featured
Side Projects
sachag
455
43k
Typedesign – Prime Four
hannesfritz
42
2.7k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Git: the NoSQL Database
bkeepers
PRO
431
65k
A Tale of Four Properties
chriscoyier
160
23k
RailsConf 2023
tenderlove
30
1.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Code Reviewing Like a Champion
maltzj
524
40k
KATA
mclloyd
32
14k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.7k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Transcript
Learning To Split and Rephrase From Wikipedia Edit History 文献紹介
( 2018/11/21 ) 長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature • Learning To Split and Rephrase From Wikipedia Edit
History • Jan A. Botha, Manaal Faruqui, John Alex, Jason Baldridge, Dipanjan Das (Google AI Language) • Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2
Split and Rephrase 複雑な文章を複数の平易な文章に書き換える操作 3 removing adding
Related Works Split and Rephrase [Narayan et al. 2017] •
新しい平易化タスク“Split and Rephrase”を提案 • ベンチマーク WebSplit を作成 • 既存のモデルを適用してタスクの難易度を調査 4
Related Works Split and Rephrase: Better Evaluation and a Stronger
Baseline [Aharoni, Goldberg. 2018] • WebSplit内のデータの重複を削減 • Copy mechanismを用いても性能が不十分 5
Contributions • Wikipediaの編集履歴 (Wikipedia Edits)から split-and-rephraseの書き換えを抽出する手法 • 英語のWikiSplitデータセットの公開 • WebSplitと比較してBLEUが倍増
(30.5 → 62.4) 6
WebSplit • 文の分割と書き換えを評価する基準を提供 • サイズが小さく反復性がある → 適用範囲が制限される • モデル評価のベンチマークには使えるが 訓練には使えない
→ WikiSplitコーパスを作成 7
Mining Wikipedia Edits • 記事からマークアップを除去 • splitta [Gillick. 2009] で文を分割
• 時間的に隣接するスナップショットを比較し 文分割を含む編集を特定 • 分割候補から高品質の分割のみを抽出 8
Mining Wikipedia Edits • Full sentence: C Candidate split: S =
(S 1 , S 2 ) • CとS 1 の接頭辞、CとS 2 の接尾辞が同じtri-gram • S 1 とS 2 の接尾辞が異なるtri-gram • BLEU(C, S 1 )とBLEU(C, S 2 )がδより小さい 9
Mining Wikipedia Edits 例: C 0 = I am a
cat who has no name as yet. S 1 = I am a cat. S 2 = I have no name as yet. BLEU(C, S 1 ) > δ < BLEU(C, S 2 ) 10 removing adding
Corpus Statistics and Quality コーパスサイズと 品質はトレードオフ ランダムな100文を 使ってδを選定 δ=0.2が最適と判断 11
Corpus Statistics and Quality • Correct/Unsupp./Miss. = 168/35/4 (δ =
0.2) → 68%は完璧で、32%はノイズを含む • このデータを訓練データとして使用 • 評価においてノイズやバイアスを含む不完全な 信号であることを受け入れる 12
Comparison to WebSplit 13
Comparison to WebSplit • WikiSplitの方がより多様でスパース → より難しいタスクとなる • WikiSplitは一様に1度の分割のみを行う →
より簡単なタスクとなる 14
Comparison to WebSplit • WikiSplitはヒューリスティックな手法による 抽出を用いて構築されている • WebSplitは複数のReferenceを提供 → WebSplitの方が評価に適したデータセット
15
Experiments • WebSplitのみ、WikiSplitのみ、両方で実験 • Text-to-textとみなし、BLEU, S-BLEUで評価 • モデルは [Aharoni, Goldberg.
2018] で最高の 結果を出した“Copy512”を使用 16
Results • WebSplitはドメイン外で 非常に低い • WikiSplitはドメイン外で も高い • 両方を使用するとさらに 向上
17 SOURCE : 入力をそのまま出力 SPLITHALF : 半分に分割し、ピリオドを追加
Results 18
Results BOTHにおいて学習にない3文の出力ができている 19
Results BOTHにおいて正確な出力が95%であることを 人手評価によって確認 20
Conclusion and Outlook • ノイズを含む大規模で多様なデータが split-and-rephraseにおいて好影響 • 今後、他のデータ源の発見により改善が できることを示唆 •
理想的には、自然な文による評価データや タスクに適した評価指標が必要 21