34, no. 1, 2020, https://www.jstage.jst.go.jp/article/jssmjournal/34/1/34_20/_pdf/-char/ja. • [Ribeiro+ 2016] Ribeiro, Marco Tulio, et al. “ʻWhy Should I Trust You?ʼ: Explaining the Predictions of Any Classifier.” arXiv:1602.04938 [cs, Stat], Feb. 2016. arXiv.org, http://arxiv.org/abs/1602.04938. • [Plumb+ 2019] Plumb, Gregory, et al. “Regularizing Black-Box Models for Improved Interpretability.” arXiv [cs.LG], 18 Feb. 2019, http://arxiv.org/abs/1902.06787. arXiv. • [Sundararajan+ 2017] Sundararajan, Mukund, et al. “Axiomatic Attribution for Deep Networks.” arXiv [cs.LG], 4 Mar. 2017, http://arxiv.org/abs/1703.01365. arXiv. • [Zhou+ 2016] Zhou, Bolei, et al. “Learning Deep Features for Discriminative Localization.” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016, https://doi.org/10.1109/cvpr.2016.319. • [Selvaraju+ 2020] Selvaraju, Ramprasaath R., et al. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization.” International Journal of Computer Vision, vol. 128, no. 2, Feb. 2020, pp. 336‒59. • [Petsiuk+ 2018] Petsiuk, Vitali, et al. “RISE: Randomized Input Sampling for Explanation of Black- Box Models.” arXiv [cs.CV], 19 June 2018, http://arxiv.org/abs/1806.07421. arXiv. • [Abnar+ 2020] Abnar, Samira, and Willem Zuidema. “Quantifying Attention Flow in Transformers.” arXiv [cs.LG], May 2020, https://arxiv.org/abs/2005.00928. arXiv. • [Doshi-Velez+ 2017] Doshi-Velez, Finale, and Been Kim. “Towards A Rigorous Science of Interpretable Machine Learning.” arXiv [stat.ML], 28 Feb. 2017, http://arxiv.org/abs/1702.08608. arXiv. 60