34, no. 1, 2020, https://www.jstage.jst.go.jp/article/jssmjournal/34/1/34_20/_pdf/-char/ja. • [Ribeiro+ 2016] Ribeiro, Marco Tulio, et al. “ʻWhy Should I Trust You?ʼ: Explaining the Predictions of Any Classifier.” arXiv:1602.04938 [cs, Stat], Feb. 2016. arXiv.org, http://arxiv.org/abs/1602.04938. • [Sundararajan+ 2017] Sundararajan, Mukund, et al. “Axiomatic Attribution for Deep Networks.” arXiv [cs.LG], 4 Mar. 2017, http://arxiv.org/abs/1703.01365. arXiv. • [Doshi-Velez+ 2017] Doshi-Velez, Finale, and Been Kim. “Towards A Rigorous Science of Interpretable Machine Learning.” arXiv [stat.ML], 28 Feb. 2017, http://arxiv.org/abs/1702.08608. arXiv. • [Yoshikawa+ 2022] Yoshikawa, Yuya, and Tomoharu Iwata. “Neural Generators of Sparse Local Linear Models for Achieving Both Accuracy and Interpretability.” An International Journal on Information Fusion, vol. 81, May 2022, pp. 116‒28. • [Yakura+ 2019] Yakura, Hiromu, et al. “Neural Malware Analysis with Attention Mechanism.” Computers & Security, vol. 87, Nov. 2019, p. 101592. • [Yoshikawa+ 2023] Yoshikawa, Yuya, and Tomoharu Iwata. “Explanation-Based Training with Differentiable Insertion/Deletion Metric-Aware Regularizers.” arXiv [cs.LG], Oct. 2023, https://arxiv.org/abs/2310.12553. arXiv. 45