$30 off During Our Annual Pro Sale. View Details »

Lyapunov Control for Flat Spin Recovery and Spin Inversion

Zac Manchester
September 16, 2016

Lyapunov Control for Flat Spin Recovery and Spin Inversion

I developed new control laws for stabilizing a tumbling spacecraft using reaction wheels. This presentation is from the 2016 AIAA Astrodynamics Specialist Conference.

Zac Manchester

September 16, 2016
Tweet

More Decks by Zac Manchester

Other Decks in Research

Transcript

  1. Zac  Manchester
    Harvard  Agile  Robotics  Lab
    (Formerly  Cornell  Space  Systems  Design  Studio)
    Lyapunov-­‐Based  Control  Laws  for
    Flat  Spin  Recovery  and  Spin  Inversion

    View Slide

  2. 2
    Motivation

    View Slide

  3. 3
    Problem:
    • Achieve  spin  about  minor  axis  of  inertia  from  arbitrary  initial  conditions
    • Align  + face  of  the  spacecraft  with  the  angular  momentum  vector
    Constraints:
    • Limited  reaction  wheel  torque
    • Limited  angular  momentum  storage  in  reaction  wheels
    Motivation

    View Slide

  4. 4
    Gyrostat  Dynamics:
    J = I 1
    ˙
    h = h ⇥ J ·(h ⇢)
    h = I·! + ⇢
    I· ˙
    ! + ! ⇥ (I·! + ⇢) + ˙
    ⇢ = ⌧
    Background

    View Slide

  5. 0
    0.5
    1
    1.5
    2
    5
    Lyapunov Stability:
    ˙
    x
    =
    f
    (
    x
    )
    V
    (
    x
    ) 0
    ˙
    V
    (
    x
    ) = @V
    @x
    d
    x
    d
    t
     0
    f
    (
    x
    ⇤) = 0
    Background

    View Slide

  6. 6
    Some  Candidates:
    VQ =
    1
    2
    hd
    ·J ·hd
    1
    2
    h·J ·h
    Lyapunov  Functions

    View Slide

  7. 7
    Some  Candidates:
    VL = hd
    ·J ·hd hd
    ·J ·h
    Lyapunov  Functions

    View Slide

  8. 8
    Periodic  Averaging:
    V 0
    L
    = hd
    ·J ·hd
    1
    T
    Z T
    0
    hd
    ·J ·h dt
    Lyapunov  Functions

    View Slide

  9. 9
    Periodic  Averaging:
    V =
    3
    2
    hd
    ·J ·hd
    1
    T
    Z T
    0
    hd
    ·J ·h +
    1
    2
    h·J ·h dt
    Lyapunov  Functions

    View Slide

  10. 10
    Discretization:
    hk = h(t0 + k t) ⇢k = ⇢(t0 + k t)
    xk =
    2
    6
    4
    hk
    .
    .
    .
    hk+N 1
    3
    7
    5 uk =
    2
    6
    4
    ⇢k
    .
    .
    .
    ⇢k+N 1
    3
    7
    5
    xd =
    2
    6
    4
    hd
    .
    .
    .
    hd
    3
    7
    5
    Calculating  ̇

    View Slide

  11. 11
    Discretization:
    1
    T
    Z T
    0
    hd
    ·
    J
    · h +
    1
    2
    h ·
    J
    · h d
    t

    1
    N
    x
    |
    d
    ¯
    J xk +
    1
    2
    N
    x
    |
    k
    ¯
    J xk
    ¯
    J =
    2
    6
    6
    6
    4
    J 0 · · · 0
    0 J · · · 0
    .
    .
    .
    .
    .
    .
    ...
    .
    .
    .
    0 0 · · · J
    3
    7
    7
    7
    5
    Calculating  ̇

    View Slide

  12. 12
    Periodic  System:
    A =
    2
    6
    6
    6
    6
    6
    6
    4
    0 13⇥3 0 · · · 0
    0 0 13⇥3
    .
    .
    . 0
    .
    .
    .
    .
    .
    .
    ...
    ...
    .
    .
    .
    0 0 · · · 0 13⇥3
    13⇥3 0 · · · 0 0
    3
    7
    7
    7
    7
    7
    7
    5
    Bk = t
    2
    6
    6
    6
    6
    4
    h⇥
    k
    J 0 · · · 0
    0 h⇥
    k+1
    J 0
    .
    .
    .
    .
    .
    .
    ...
    ... 0
    0 · · · 0 h⇥
    k+N 1
    J
    3
    7
    7
    7
    7
    5
    Calculating  ̇
    ˙
    h = h ⇥
    J
    ·(h ⇢) !
    xk+1 =
    Axk +
    Bkuk

    View Slide

  13. 13
    Continuum  Limit:
    V
    =
    1
    N
    x
    |
    d
    ¯
    J xk +
    1
    2
    N
    x
    |
    k
    ¯
    J xk
    1
    N
    x
    |
    d
    ¯
    J xk+1
    1
    2
    N
    x
    |
    k+1
    ¯
    J xk+1
    =
    1
    N
    x
    |
    d
    ¯
    J Bk uk
    1
    N
    x
    |
    k A
    | ¯
    J Bk uk
    1
    2
    N
    u
    |
    k B
    |
    k
    ¯
    J Bk uk
    ˙
    V = lim
    N!1
    V
    t
    =
    1
    T
    Z t0+T
    t0
    (h + hd) · J · h ⇥ J · ⇢ dt
    Calculating  ̇

    View Slide

  14. 14
    Almost-­‐Global  Asymptotic  Stability:
    ˙
    V =
    1
    T
    Z T
    0
    (h + hd)·J ·h ⇥ J ·⇢ dt
    b(h)
    ⇢ ⇡ ⇢
    max
    sign(b)
    Control  Laws

    View Slide

  15. 15
    Smooth  Control  Law:
    ⇢ = ⇢
    max
    tanh(↵b)
    x
    -5 0 5
    tanh(x)
    -1
    -0.8
    -0.6
    -0.4
    -0.2
    0
    0.2
    0.4
    0.6
    0.8
    1
    Control  Laws

    View Slide

  16. 16
    Momentum  Vector  Trajectory:
    0.5
    0
    -0.5
    -1
    1
    0.5
    0
    -0.5
    0.5
    0
    -0.5
    1
    Flat-­‐Spin  Recovery

    View Slide

  17. 0 2 4 6 8
    ;
    1
    -0.01
    0
    0.01
    0 2 4 6 8
    ;
    2
    -0.01
    0
    0.01
    Time (min)
    0 2 4 6 8
    ;
    3
    -0.01
    0
    0.01
    17
    Control  Inputs:
    Flat-­‐Spin  Recovery

    View Slide

  18. 18
    Momentum  Vector  Trajectory:
    0.5
    0
    -0.5
    -0.5
    0
    0.5
    -1
    1
    0.8
    0.6
    0.4
    0.2
    0
    -0.2
    -0.4
    -0.6
    -0.8
    Spin  Inversion

    View Slide

  19. 0 1 2 3 4 5 6
    ;
    1
    -0.01
    0
    0.01
    0 1 2 3 4 5 6
    ;
    2
    -0.01
    0
    0.01
    Time (min)
    0 1 2 3 4 5 6
    ;
    3
    -0.01
    0
    0.01
    19
    Control  Inputs:
    Spin  Inversion

    View Slide

  20. 20
    [email protected]
    Questions?

    View Slide