A Variable Forward-Sweep Wing Design for Improved Perching in Micro Aerial Vehicles

A Variable Forward-Sweep Wing Design for Improved Perching in Micro Aerial Vehicles

Research performed in the Harvard Agile Robotics Lab that I presented at AIAA SciTech 2017. Read the paper here: http://zacinaction.github.io/docs/Morphing_Wing.pdf

6348c7765745abd70d165eb3e34eca1b?s=128

Zac Manchester

January 09, 2017
Tweet

Transcript

  1. A  Variable  Forward-­‐Sweep  Wing  Design  for   Improved  Perching  in

     Micro  Aerial  Vehicles Zac  Manchester,  Jeff  Lipton,  Rob  Wood,  and  Scott  Kuindermsa
  2. Motivation 1

  3. Motivation 2

  4. Motivation 3

  5. Motivation 4

  6. Existing  Work 5 Desbiens,  Asbeck,  and  Cutkosky  (2011)

  7. Existing  Work 6 Moore,  Cory,  and  Tedrake (2014)

  8. Inspiration 7

  9. Starting  Point 8

  10. Harvard  CFS  Wind  Tunnel 9 Three-dimensional kinematic analysis of avian

    gait change tion or deceleration. The three-dimensional kinematic also includes the information available in two- onal kinematic studies, and three-dimensional changes local licensed animal vendor and housed in the Conco Station animal care facilities, where they were provid food and water ad libitum. The birds were trained to he Harvard-Concord Field Station (CFS) wind tunnel, designed for use in studies of animal flight. 6:1 contraction 0.5° 9.01 m 1.4 m 1.2 m 2.95 m Hedrick,  Tobalske,  and  Biewener (2002)
  11. Wind  Tunnel  Model 10

  12. Test  Setup 11 MATLAB Camera Servo Arduino AprilTags Wind  Tunnel

      Model Force  +  Torque   Sensor
  13. April  Tags 12

  14. Test  Setup 13

  15. Data  Analysis 14 20 10 0 10 20 30 40

    50 60 70 2 4 6 8 10 F x (N) 20 10 0 10 20 30 40 50 60 70 24 22 20 18 16 ↵ (deg.) F z (N)
  16. Aerodynamic  Coefficients 15 20 10 0 10 20 30 40

    50 60 70 1 0.5 0 0.5 1 CL 20 10 0 10 20 30 40 50 60 70 0 0.5 1 1.5 2 ↵ (deg.) CD Straight Swept
  17. Aerodynamic  Coefficients 16 20 10 0 10 20 30 40

    50 60 70 2.5 2 1.5 1 0.5 0 0.5 ↵ (deg.) CM Straight Swept
  18. Perching  Trajectory  Optimization 17 J(X, U) = 100 vT N

    vN + 10 !T N !N + 0.01 N 1 X k=0 uT k uk
  19. Perching  Trajectory  Optimization 18 0 0.2 0.4 0.6 0.8 1

    1.2 1.4 1.6 1.8 2 2.2 0 20 40 60 80 100 Time (sec.) ↵ (deg.) Straight Swept
  20. Perching  Trajectory  Optimization 19 0 0 . 2 0 .

    4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6 1 . 8 2 2 . 2 0 0 . 05 0 . 1 0 . 15 Thrust (N) Straight Swept 0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6 1 . 8 2 2 . 2 30 20 10 0 10 Time (sec.) Elevator (deg.)
  21. Next  Steps 20

  22. Next  Steps 21

  23. 22 agile.seas.harvard.edu zmanchester@seas.harvard.edu Conclusions • Pitch  can  be  trimmed  by

     adjusting  wing  sweep. • Forward  swept  wings  combined  with  effective  tail   design  can  enhance  high-­‐⍺ control  authority. • Forward  swept  wing  configurations  can  perform   better  in  perching  maneuvers.