Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Caltech 03/2015

Caltech 03/2015

Tea talk at Caltech

Adrian Price-Whelan

March 09, 2015
Tweet

More Decks by Adrian Price-Whelan

Other Decks in Science

Transcript

  1. 0.2 0.4 0.6 0.8 1.0 0.0 Jing & Suto (2002)

    (c/a) 0.6 0.8 1.0 0.4 (b/a) 0.5<(c/a)<0.6 minor/major intermediate/major
  2. pdf 6 ⇥ 1011 < M/M < 2 ⇥ 1012

    0.2 0.4 0.6 0.8 1.0 0.0 Schneider et al. (2012) (c/a) (b/a)
  3. Weak lensing Constraint on mean projected halo ellipticity van Uitert

    et al. (2012) eh ⇡ 0.4 ± 0.25 (c/a) proj = 0.6 ± 0.25
  4. Results from the Sagittarius stream: Newberg et al. 2007 Law

    & Majewski 2010 Ibata et al. 2013 Deg & Widrow 2013 Ibata et al. 2001 spherical Johnston et al. 2005 Vera-Ciro & Helmi 2013 oblate spherical triaxial maybe still spherical oblate → triaxial triaxial
  5. ith star orbit progenitor orbit potential unbinding time velocity dispersion

    ~tidal radius leading/ trailing Price-Whelan et al. (2014) p(wi | wp, ✓p, ⌧i, ) progenitor internals {N(ri | rp ± rtide ˆ rp, r)|⌧i N(vi | vp, v)|⌧i
  6. ⌧ub K unbinding time leading/trailing tail M mass today any

    parametrization per star progenitor potential marginalize out Rewinder model parameters
  7. ⌧ub K unbinding time leading/trailing tail M mass today any

    parametrization per star progenitor potential (l, b, d, µl, µb, vr) (l, b, d, µl, µb, vr) marginalize out WE’RE HOSED Rewinder Price-Whelan et al. (2014)
  8. 50 −100 −50 0 50 X [kpc] −100 −50 0

    50 X [kpc] x z y Potential: Miyamoto-Nagai disk + Hernquist spheroid + Triaxial, log. halo (q1, qz, , vh, rh) Price-Whelan et al. (2014)
  9. −100 −50 0 50 X [kpc] −100 −50 0 X

    [kpc] x “Data”: Price-Whelan et al. (2014) 8 “RR Lyrae” stars Gaia velocity errors 2% distance errors + Progenitor, same errors
  10. Next Marginalize true phase-space positions of the stars Marginal likelihood

    has fixed dimensionality set by potential params., progenitor params Price-Whelan et al. (in prep.)
  11. Nparams / 6Nstars Good: Bad: - test particle orbits (no

    N-body) - arbitrary potentials - observational uncertainties / missing data - less sensitive to observational biases
  12. Tidal streams are sensitive to the Milky Way potential at

    large scales When modeling streams, must use a probabilistic model, e.g. Rewinder SMHASH will measure precise distances to stars in Sgr & Orphan streams
  13. Mean density of streams evolves faster relative to spherical/oblate Chaos

    may become important, mixing can reduce density in streams In triaxial potentials:
  14. For regular orbits: ˙ J = @H @✓ = 0

    ˙ ✓ = @H @J = ⌦ ( x , v ) ! ( ✓ , J )
  15. Triaxial / 3 dof = 6D phase space = 3D

    torus embedded in Regular orbit:
  16. x = X k ak e i!kt !k = nk

    ⌦1 + mk ⌦2 + lk ⌦3 ⌦i = Fi(J1, J2, J3)
  17. NAFF FFT orbit Convolve with Hanning filter Find and subtract

    strongest component [repeat] Laskar (1990) Valluri & Merritt (1998) (Numerical Approximation of Fundamental Frequencies)
  18. Triaxial / 3 dof = 6D phase space = 3D

    torus Regular orbit: Triaxial / 3 dof = 6D phase space = 5D energy surface Chaotic orbit:
  19. Chaotically mixed ➞ uniform on energy surface ⇢E0 (x) /

    Z d3v (H E0) / p E0 ( x ) Price-Whelan et al. (2015) (projected into configuration space)
  20. “Distance” to fully-mixed state DKL( t ) = Z d

    x ⇢ ( x, t ) ln ⇢ ( x, t ) ⇢E0 ⇡ N X i ln ⇢ ( xi, tj) ⇢E0 Price-Whelan et al. (2015)
  21. x z

  22. Chaos is generic to triaxial potentials Frequency diffusion seems to

    be predictive of observables, e.g., stream morphology More realistic potentials will be time- dependent, lumpy, multi-component, all of which may enhance chaos The mere existence of thin streams around the Milky Way places constraints on the potential