Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SMHASH telecon 03/2015
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Adrian Price-Whelan
March 11, 2015
Science
0
100
SMHASH telecon 03/2015
Adrian Price-Whelan
March 11, 2015
Tweet
Share
More Decks by Adrian Price-Whelan
See All by Adrian Price-Whelan
the Astropy project - Flatware
adrn
1
250
the dynamic Milky Way in the Gaia era
adrn
1
220
The Astropy Project
adrn
1
120
Git and version control
adrn
1
120
Chaos and stellar streams
adrn
1
180
Software testing
adrn
0
210
Local Group Astrostatistics
adrn
1
99
100% Outer Space
adrn
1
160
Caltech 03/2015
adrn
0
180
Other Decks in Science
See All in Science
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
140
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
480
やるべきときにMLをやる AIエージェント開発
fufufukakaka
2
980
データマイニング - ノードの中心性
trycycle
PRO
0
320
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
140
Ignite の1年間の軌跡
ktombow
0
210
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
力学系から見た現代的な機械学習
hanbao
3
3.8k
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
410
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
230
機械学習 - SVM
trycycle
PRO
1
980
Featured
See All Featured
Exploring anti-patterns in Rails
aemeredith
2
250
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Abbi's Birthday
coloredviolet
1
4.7k
Mobile First: as difficult as doing things right
swwweet
225
10k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
The untapped power of vector embeddings
frankvandijk
1
1.6k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Transcript
Rewinder adrian price-whelan
Tidal disruption is simple
t = 0 Price-Whelan et al. (2014) Rewinder
Rewinder Price-Whelan et al. (2014) t = -1 evaluate likelihood
Rewinder Price-Whelan et al. (2014) t = -2 evaluate likelihood
Rewinder Price-Whelan et al. (2014) t = -3
⌧ub K unbinding time leading/trailing tail M mass today any
parametrization per star progenitor potential (l, b, d, µl, µb, vr) (l, b, d, µl, µb, vr) marginalize out WE’RE HOSED Rewinder Price-Whelan et al. (2014)
−100 −50 0 50 X [kpc] −100 −50 0 X
[kpc] x “Data”: Price-Whelan et al. (2014) 8 “RR Lyrae” stars Gaia velocity errors 2% distance errors + Progenitor, same errors
8 RR Lyrae stars Gaia velocity errors 2% distance error
Price-Whelan et al. (2014)
Price-Whelan et al. (2014) 8 RR Lyrae stars 2% distance
errors No proper motions
Price-Whelan et al. (2014) Recover unobserved proper motion for stars
Nparams / 6Nstars Good: Bad: - test particle orbits (no
N-body) - arbitrary potentials - observational uncertainties / missing data - less sensitive to observational biases
Next Marginalize true phase-space positions of the stars Marginal likelihood
has fixed dimensionality set by potential params., progenitor params Price-Whelan et al. (in prep.)