Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SMHASH telecon 03/2015
Search
Adrian Price-Whelan
March 11, 2015
Science
0
100
SMHASH telecon 03/2015
Adrian Price-Whelan
March 11, 2015
Tweet
Share
More Decks by Adrian Price-Whelan
See All by Adrian Price-Whelan
the Astropy project - Flatware
adrn
1
240
the dynamic Milky Way in the Gaia era
adrn
1
210
The Astropy Project
adrn
1
120
Git and version control
adrn
1
120
Chaos and stellar streams
adrn
1
180
Software testing
adrn
0
210
Local Group Astrostatistics
adrn
1
94
100% Outer Space
adrn
1
160
Caltech 03/2015
adrn
0
180
Other Decks in Science
See All in Science
データマイニング - グラフデータと経路
trycycle
PRO
1
260
機械学習 - SVM
trycycle
PRO
1
940
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
280
凸最適化からDC最適化まで
santana_hammer
1
340
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
0
140
データマイニング - コミュニティ発見
trycycle
PRO
0
190
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
450
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
120
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
160
データベース03: 関係データモデル
trycycle
PRO
1
320
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
210
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
220
Featured
See All Featured
Designing Experiences People Love
moore
143
24k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
83
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
180
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
0
59
Design in an AI World
tapps
0
91
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
190
Color Theory Basics | Prateek | Gurzu
gurzu
0
140
We Have a Design System, Now What?
morganepeng
54
7.9k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
Rewinder adrian price-whelan
Tidal disruption is simple
t = 0 Price-Whelan et al. (2014) Rewinder
Rewinder Price-Whelan et al. (2014) t = -1 evaluate likelihood
Rewinder Price-Whelan et al. (2014) t = -2 evaluate likelihood
Rewinder Price-Whelan et al. (2014) t = -3
⌧ub K unbinding time leading/trailing tail M mass today any
parametrization per star progenitor potential (l, b, d, µl, µb, vr) (l, b, d, µl, µb, vr) marginalize out WE’RE HOSED Rewinder Price-Whelan et al. (2014)
−100 −50 0 50 X [kpc] −100 −50 0 X
[kpc] x “Data”: Price-Whelan et al. (2014) 8 “RR Lyrae” stars Gaia velocity errors 2% distance errors + Progenitor, same errors
8 RR Lyrae stars Gaia velocity errors 2% distance error
Price-Whelan et al. (2014)
Price-Whelan et al. (2014) 8 RR Lyrae stars 2% distance
errors No proper motions
Price-Whelan et al. (2014) Recover unobserved proper motion for stars
Nparams / 6Nstars Good: Bad: - test particle orbits (no
N-body) - arbitrary potentials - observational uncertainties / missing data - less sensitive to observational biases
Next Marginalize true phase-space positions of the stars Marginal likelihood
has fixed dimensionality set by potential params., progenitor params Price-Whelan et al. (in prep.)