Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
イオンが立ち上げる超巨大データ基盤/Super huge data platform laun...
Search
AEON
December 14, 2023
Technology
2
3.3k
イオンが立ち上げる超巨大データ基盤/Super huge data platform launched by AEON
https://techplay.jp/event/924680
データマネジメントの勘所 大手企業3社から学ぶ!データ分析基盤と組織のリアル
AEON
December 14, 2023
Tweet
Share
More Decks by AEON
See All by AEON
会社もクラウドも違うけど 通じたコスト削減テクニック/Cost optimization strategies effective regardless of company or cloud provider
aeonpeople
2
370
SREがコストセンターではないことを大きな声と実例で伝えたい/SRE Is Not a Cost Center: Real-World Stories That Prove True Value
aeonpeople
1
560
SREチームの越境と対話〜どのようにしてイオンスマートテクノロジーは横軸運用チームの廃止に至ったか〜/the-Cross-border-and-dialogue-of-SRE
aeonpeople
12
6.2k
PagerDuty×ポストモーテムで築く障害対応文化/Building a culture of incident response with PagerDuty and postmortems
aeonpeople
3
770
【内製開発Summit 2025】イオンスマートテクノロジーの内製化組織の作り方/In-house-development-summit-AST
aeonpeople
2
2.6k
【ITmedia DX Summit 23/基調講演】イオンが構築する超大規模データ基盤と、その活用戦略
aeonpeople
2
870
イオングループ プロダクト人材向け会社紹介資料 / AEON Product Talent Recruitment Deck
aeonpeople
0
1.3k
DevOpsに向けたテスト方針/Testing Policy for DevOps
aeonpeople
1
190
HCP TerraformとAzure:イオンスマートテクノロジーのインフラ革新 / HCP Terraform and Azure AEON Smart Technology's Infrastructure Innovation
aeonpeople
3
1.7k
Other Decks in Technology
See All in Technology
人と生成AIの協調意思決定/Co‑decision making by people and generative AI
moriyuya
0
170
地域コミュニティへの「感謝」と「恩返し」 / 20250726jawsug-tochigi
kasacchiful
0
100
AI時代の知識創造 ─GeminiとSECIモデルで読み解く “暗黙知”と創造の境界線
nyagasan
0
160
CSPヘッダー導入で実現するWebサイトの多層防御:今すぐ試せる設定例と運用知見
llamakko
1
270
スプリントレビューを効果的にするために
miholovesq
9
1.7k
LLM開発を支えるエヌビディアの生成AIエコシステム
acceleratedmu3n
0
340
増え続ける脆弱性に立ち向かう: 事前対策と優先度づけによる 持続可能な脆弱性管理 / Confronting the Rise of Vulnerabilities: Sustainable Management Through Proactive Measures and Prioritization
nttcom
1
210
Railsの限界を超えろ!「家族アルバム みてね」の画像・動画の大規模アップロードを支えるアーキテクチャの変遷
ojima_h
4
520
KCD Lima: eBee in Peru!
lizrice
0
110
データエンジニアがクラシルでやりたいことの現在地
gappy50
3
660
Jitera Company Deck / JP
jitera
0
250
【CEDEC2025】大規模言語モデルを活用したゲーム内会話パートのスクリプト作成支援への取り組み
cygames
PRO
1
320
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
We Have a Design System, Now What?
morganepeng
53
7.7k
Code Review Best Practice
trishagee
69
19k
GitHub's CSS Performance
jonrohan
1031
460k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
How to Ace a Technical Interview
jacobian
278
23k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Typedesign – Prime Four
hannesfritz
42
2.7k
Transcript
イオンが⽴ち上げる超巨⼤データ基盤 イオン株式会社 CTO 兼 イオンスマートテクノロジー CTO ⼭﨑 賢
イオン株式会社 CTO 兼 イオンスマートテクノロジー CTO ⼭﨑 賢 ⾃⼰紹介 ・Yahoo︕ JAPANでエンジニアとしてオークション/ショッピングの開発
・リクルートで⼤規模サービス複数の開発責任者 ・アソビューCTO ・トラストバンクCTO ・2024年3⽉から現職 イオンをTechカン パーに化するために ⾊々発信していま す。 ⼭﨑 賢 ( やまけん @yamaken_66 )
数字で⾒るイオングループ
成り⽴ち ! " # $ 歴 史 ' ︑ 合
併 $ 歴 史 + , - . / 0 連 帯 +
成り⽴ち 膨⼤な顧客がそれぞれに存在するが、 多くは相互に連携されていない ✗ ✗ ✗ ✗ ✗ ✗ ✗
✗
成り⽴ち まず、共通の会員IDを⽤意し相互に接続を実施
そして、グループ全体のデータを統合していく データ基盤 会計 商品 店舗 顧客 ⾏動 ポイント 天気 出荷・配送
グループ全体のデータを統合していく データ基盤 会計 商品 店舗 顧客 ⾏動 ポイント 天気 出荷・配送
⽬的は個⼈の特定ではなく、顧客価値の最⼤化のため。 お客様が望んでいるもの/価値 更に⼼地よい顧客体験 データを⽤いた経営の最適化 こららの実現のためにデータを集約し活⽤することを⽬指しています。
超巨⼤とは (規模の話) 述べ会員数 1億⼈以上 店舗数 20,000 店舗以上 年間来店客数 14億以上 グループ連結売上
9兆円以上 ⼦会社数 300以上
DM ETL ETL ETL Storage API MQ DB link ETL
㊙ 超加⼯ プロセス アーキテクチャの触りだけ ( 今後の展開も含む ) Azure Japan Region カスタマーデータプラットフォーム/従業員向けの業務サポートツール/各種ダッシュボード アドホック分析/データサイエンス/Openデータとのコラボレーション/各社とのオーケストレーション
超巨⼤データ基盤の勘所って︖ 今はアーキテクチャが進化している。 単純な⼤量データ基盤なら何も⼼配ない。 集めて貯めるだけなら、⼭程事例はある。 超巨⼤のKnow Howはそこではない 特にイオングループは合併で⼤きくなってきた会社。 それぞれの会社には ・違うシステムがあり ・違うビジネスがあり
・違うデータがある
超巨⼤とは ( 実は最も重要な観点 ) 超巨⼤ ≠ データ量 超巨⼤ = 多様性
多様性 = 利害関係 多様性 =データ構造 多様性 =連携システム 多様性 = 利⽤者
最も考えるべきこと1 連携システムの多様性
最も考えるべきこと1 連携システムの多様性 連携システム。特にデータ源泉は多様。 ・インフラ環境も違う ( オンプレだったり、違うクラウドだったり ) ・稼働しているOSも違う( Windowsだったり、Linuxだったり )
・連携⽅式が違う ( APIだったり、TCPだったり、HULFTだったり、CSVだったり) ・連携タイミングが違う ( リアルだったり、バッチだったり ) ・連携鮮度が違う ( 当⽇分だったり、前⽇分だったり ) 多様な要件に合わせに⾏かない ・データ基盤は正しく運⽤し続ける必要がある ・データ源泉の多様性に合わせにいくと、無限に障害点が増える ・標準的な連携パターンを複数⽤意し、その連携パターンのどれかを選択する設計
最も考えるべきこと2 データ構造の多様性
送信されるデータ構造もデータ源泉では多様 ・データ階層 ・データ型 ・データカラム名 などなど 概念毎にフォーマットを正規化/標準化する ・データ源泉のデータ構造は無邪気に変更されると思え ・その度にデータ連携が失敗しないための備えをする ・データ基盤取り込み⽤のデータフォーマットは標準化し、データ源泉から送る側で 標準化してもらう責任分解の設計をする
最も考えるべきこと2 データ構造の多様性 源泉 源泉側システム データ基盤 標準化変換 標準IF ETL DM
最も考えるべきこと3 利害関係の多様性
複数の組織や事業会社から成り⽴つデータ基盤の場合、利害関係に差異が⽣まれる ・必ずしも⼤規模データを連携する源泉がデータ基盤の最⼤受益者とはならない ・むしろ保有データが少ない組織/事業ほど、⾃分らで補完出来ないデータ基盤にニー ズがある ・Give & Takeにはならない。限りなくGiveのみ。限りなくTakeのみが存在する 個別単位のベネフィットにスコープしない ・組織/事業単位の短期的なROIを考えると破綻する ・もっと⼤きな枠組み。会社全体とかグループとか。全体最適で最上位組織が
号令を出す ・データが集まるとイノベーションが発⽣する。結果として全体が利 益を享受出来る 最も考えるべきこと3 利害関係の多様性 デ ー タ 基 盤 事業A 事業B うちで既にデータいっぱい持ってるから内部 分析で⼗分なんやけどな・・ うちデータ全然無いから、事業Aのデータ めっちゃ助かるわー デ ー タ 基 盤 事業A 事業B 全体でデータ基盤に集約することを決めよう 結果としてデータが集約されることで、新しい 発明が起き、⾮連続な成⻑が発⽣する
最も考えるべきこと4 利⽤者の多様性
データ基盤の利⽤者は⼈であれ、システムであれ多様となる。 ・アドホックに分析したい ・⾼度なモデルを開発したい ・⾃分⽤のダッシュボードを作りたい ・WEB接客をぶん回したい ニーズは宝。制限しない。 ・利⽤の間⼝は広げる。 ・⾃由度をあげる ・それを可能なシステムを作り上げる ・中央は聖域化し⼲渉しない
・中央は使わせない。衛星を作る データ基盤 最も考えるべきこと4 利⽤者の多様性 あれやりたい これやりたい もっともっと カリカリカリカリ データ基盤 あれやりたい これやりたい もっともっと カリカリカリカリ ⾃由 分析 環境 ⾼度分析⽤ リソース BI DB 専⽤ リソース 専⽤ リソース
考えるべきこと 〜 まとめ 〜
考えるべきこと 〜 まとめ 〜 データ基盤 聖域化zone ⾃由に使わせない 堅牢に。安定的に。 多様なニーズを受け⼊れる 必要に応じて仕組みを追加する
標準化zone 多様性を受け⼊れない ⼀定のルールで厳格化する ETL ETL ETL Storage API MQ DB link ETL 多様的利⽤zone 意志統制zone 個別でなく、組織全体/グループ全体としてデータを集めることを意思決定し推進する
そして今後の展望
データを⾼度に抽象化し個⼈を特定出来ない状態にした上で、クリーンルームを利⽤して 他社とコラボレーションを実現 各種マーケティングとの接続を実施し、リテールメディア/広告の最適配信を実現 サプライチェーン全体に対する需要予測/商品開発の分析 ⽣産や配送の全体効率化と、地域社会の⽣産者に対する還元 ⽇本全体の⼩売の最適化への貢献
いつもの
https://recruit.aeon.info/find-my-aeon/?recruit_type=career We Are Hiring !!! 〜 ご清聴ありがとうございました 〜 ⼩売企業でエンジニアリングとしてのイメージが薄いイオングループですが、現在その⾵⼟を⼤きく変えようと 仲間が集結しています。
イオンを起点に⽇本全体にポジティブなエンジニアリングイノベーションを起こしていきます