Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2019_G検定対策_数学講座01_ディープラーニングでの基礎計算問題/20190125_JD...
Search
ITO Akihiro
January 25, 2019
Technology
0
7
2019_G検定対策_数学講座01_ディープラーニングでの基礎計算問題/20190125_JDLA_G_Math_1
G検定対策社内数学講座
--
ディープラーニングでの基礎計算問題
パーセプトロンとCNNと活性化関数
ITO Akihiro
January 25, 2019
Tweet
Share
More Decks by ITO Akihiro
See All by ITO Akihiro
【NoMapsTECH 2025】AI Edge Computing Workshop
akit37
0
530
【NoMapsTECH 2025】AI Tech Community Talk
akit37
0
240
エンジニア目線でのテスラ
akit37
0
52
「重鎮問題」について(軽めに)
akit37
0
65
Software + Hardware = Fun++
akit37
0
30
基本的に "リモートしかない" ワーク/20231128_KBS_LT
akit37
1
23
3つの先端技術が コミュニティ軸で融合した話。/20230615_CMCMeetup
akit37
0
19
Bootleg_越境してみたときのアウェイ感。/20230328_CMCMeetup
akit37
0
25
始まりは2017年のG検定。/20221026_AITable
akit37
0
19
Other Decks in Technology
See All in Technology
20251007: What happens when multi-agent systems become larger? (CyberAgent, Inc)
ornew
1
440
いまからでも遅くない!SSL/TLS証明書超入門(It's not too late to start! SSL/TLS Certificates: The Absolute Beginner's Guide)
norimuraz
0
270
Wasmの気になる最新情報
askua
0
130
Claude Code Subagents 再入門 ~cc-sddの実装で学んだこと~
gotalab555
10
16k
20251014_Pythonを実務で徹底的に使いこなした話
ippei0923
0
210
「使い方教えて」「事例教えて」じゃもう遅い! Microsoft 365 Copilot を触り倒そう!
taichinakamura
0
440
組織改革から開発効率向上まで! - 成功事例から見えたAI活用のポイント - / 20251016 Tetsuharu Kokaki
shift_evolve
PRO
1
120
Data Hubグループ 紹介資料
sansan33
PRO
0
2.2k
大規模サーバーレスAPIの堅牢性・信頼性設計 〜AWSのベストプラクティスから始まる現実的制約との向き合い方〜
maimyyym
10
5k
Biz職でもDifyでできる! 「触らないAIワークフロー」を実現する方法
igarashikana
0
260
ガバメントクラウドの概要と自治体事例(名古屋市)
techniczna
3
240
初めてのDatabricks Apps開発
taka_aki
1
150
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
7
260
Faster Mobile Websites
deanohume
310
31k
Statistics for Hackers
jakevdp
799
220k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
Site-Speed That Sticks
csswizardry
13
910
Designing for Performance
lara
610
69k
Become a Pro
speakerdeck
PRO
29
5.6k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
GraphQLとの向き合い方2022年版
quramy
49
14k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Transcript
ディープラーニングでの 基礎計算 〜パーセプトロンとCNNと活性化関数〜 Jun. 2019 created by ITO Akihiro
パーセプトロンの概念 入力 重み バイアス 出力 入力:1 or 0 出力:1 or 0
画像認識の概念 1 2 3 4 5 6 7 8 9
10 11 12 31 32 12 21 22 23 3 1 2 ・ ・ ・ 入力層 中間層 出力層 1 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 0 0 重み w1-1 ... w1-36 重み w2-1 ... w2-6 それぞれのシグモイドニューロンは、 ある特徴に対して発火する
CNN (Convolutional Neural Network)の概念 畳み込み層 フィル タ3 特徴マップ 3 プーリング層
出力層 ユニット3 特徴を抽出 特徴をさらに濃縮
フィルタを順に当て 画像を単純化し、 特徴を抽出する。 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15 16 17 18 19 20 21 ... ... 121 元画像 フィルタ1 フィルタ2 斜め方向に反応 縦方向に反応
例: 入力画像 (H,W)=(11,11) フィルタサイズ(Fh,Fw)=(3,3) パディング (P)=0 ストライド (S)=2 ⇒ 出力画像 (Oh,Ow)=(5,5) 1 0 0
1 0 1 3 1 2 1 2 2 3 2 3 2 2 2 3 2 1 2 0 1 1 0 0 0 0 0 0 2 1 2 0 2 2 3 2 2 1 2 2 2 1 0 1 0 1 0 公式
活性化関数 ステップ シグモイド tanh (ハイパボリックタンジェント) ReLU ReLU6 0 1 0
0 0 0 6 0 0 1 0 -1 1 0