Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Group Meeting Research Update (10-5-2012)

Alok
October 05, 2012

Group Meeting Research Update (10-5-2012)

Brongersma group meeting research update presentation

Alok

October 05, 2012
Tweet

Other Decks in Research

Transcript

  1. A corrected Drude model describes real metals = 2 p

    2 + ı contribution of the bound electrons electron scattering
  2. A corrected Drude model describes real metals 10 0 10

    _2{ } epsilon near zero plasmonic
  3. Today’s takeaways • Semiconductors in the “free- electron regime” offer

    intriguing possibilities • ENZ materials can modulate silicon waveguide modes • Degenerately doped III-Vs are good mid-IR plasmonic materials
  4. We can exploit this effect for optical modulation Si 0

    < < 12 Si 0 ON OFF We need a material we can switch from dielectric to ENZ on-demand
  5. −12 −10 −8 −6 −4 −2 1 1.00 1.30 1.55

    1.70 2.00 Wavelength [µm] −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 Accumulating electrons in ITO allows on-demand ENZ creation −12 −10 −8 −6 −4 −2 0 2 4 1 1.5 2.0 2.5 3.0 2 _2{ } [µK] n = 1×1019 cm-3 1.4×1021 6.3×1020
  6. −12 −10 −8 −6 −4 −2 1 1.00 1.30 1.55

    1.70 2.00 Wavelength [µm] −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 Accumulating electrons in ITO allows on-demand ENZ creation −12 −10 −8 −6 −4 −2 0 2 4 1 1.5 2.0 2.5 3.0 2 _2{ } [µK] n = 1×1019 cm-3 1.4×1021 6.3×1020
  7. −12 −10 −8 −6 −4 −2 1 1.00 1.30 1.55

    1.70 2.00 Wavelength [µm] −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 Accumulating electrons in ITO allows on-demand ENZ creation −12 −10 −8 −6 −4 −2 0 2 4 1 1.5 2.0 2.5 3.0 2 _2{ } [µK] n = 1×1019 cm-3 1.4×1021 6.3×1020 * assuming 5 nm HfO2 gate dielectric V = 0 V V = 5 V
  8. Si Si 10 nm ITO 5 nm HfO2 A coated

    Si waveguide forms an MOS capacitor SiO2 Si
  9. Si Si This waveguide supports two modes SiO2 Si 10

    nm ITO 5 nm HfO2 Ex | n 1016 1019 1016 1019 Ex | TM0 TE1 TM0 |Ex |
  10. Si Si This waveguide supports two modes SiO2 Si 10

    nm ITO 5 nm HfO2 Ex | n 1016 1019 1016 1019 Ex | TM0 TE1 TM0 |Ex | 016 019 1016 1019 |E |E TM0 TE1 TE1 |Ey |
  11. Si Si This waveguide supports two modes SiO2 Si 10

    nm ITO 5 nm HfO2 Ex | n 1016 1019 1016 1019 Ex | TM0 TE1 TM0 |Ex | 016 019 1016 1019 |E |E TM0 TE1 TE1 |Ey |
  12. This modulator operates via electro-absorption −12 −10 −8 −6 −4

    −2 0 2 4 1 1.00 1.30 1.55 1.70 2.00 Wavelength [µm] −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 _2{ } [µK] AK{ } accumulating electrons accumulating electrons
  13. This modulator operates via electro-absorption −12 −10 −8 −6 −4

    −2 0 2 4 1 1.00 1.30 1.55 1.70 2.00 Wavelength [µm] −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 _2{ } [µK] AK{ } accumulating electrons accumulating electrons
  14. This modulator operates via electro-absorption −12 −10 −8 −6 −4

    −2 0 2 4 1 1.00 1.30 1.55 1.70 2.00 Wavelength [µm] −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 _2{ } [µK] AK{ } accumulating electrons accumulating electrons AK{ } b _2{ }
  15. This modulator operates via electro-absorption −12 −10 −8 −6 −4

    −2 0 2 4 1 1.00 1.30 1.55 1.70 2.00 Wavelength [µm] −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 _2{ } [µK] AK{ } accumulating electrons accumulating electrons AK{ } b _2{ } Nothing new! Same thing in Si
  16. This modulator operates via electro-absorption −12 −10 −8 −6 −4

    −2 0 2 4 1 1.00 1.30 1.55 1.70 2.00 Wavelength [µm] −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 _2{ } [µK] AK{ } accumulating electrons accumulating electrons AK{ } b _2{ } Nothing new! Same thing in Si But ENZ enhances field precisely in absorbing region
  17. This modulator operates via electro-absorption −12 −10 −8 −6 −4

    −2 0 2 4 1 1.00 1.30 1.55 1.70 2.00 Wavelength [µm] −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2 _2{ } [µK] AK{ } accumulating electrons accumulating electrons AK{ } b _2{ } Nothing new! Same thing in Si But ENZ enhances field precisely in absorbing region No field enhancement in Si
  18. High electric fields correspond to ENZ regions | 1016 1019

    1016 1019 TM0 TE1 |Ex | ON |Ex | n 1016 1019 1016 1019 6.33×1020 |Ex | n ON OFF |Ex | OFF ENZ ITO accumulation regions
  19. 3 dB modulation depth in under 30 microns 0 5

    10 15 20 25 30 Length [µm] −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 Loss [dB] TE1 (ON) TM0 (ON) TE1 (OFF) TM0 (OFF)
  20. Mid-IR plasmonics: (relatively) uncharted territory Mid-infrared spectrum hosts a variety

    of intriguing phenomena Perhaps surface plasmons can play a role?
  21. InAs is a promising mid-IR plasmonic material • Supports doping

    ~1020 cm-3 • Small effective mass 2 p = n e2 0m
  22. InAs is a promising mid-IR plasmonic material • Supports doping

    ~1020 cm-3 • Small effective mass 2 p = n e2 0m • Compatible with GaAs family
  23. InAs is a promising mid-IR plasmonic material • Supports doping

    ~1020 cm-3 • Small effective mass 2 p = n e2 0m We need to measure SPPs in InAs • Compatible with GaAs family
  24. Attenuated total reflectance allows direct excitation of SPPs An ev

    LQWHUQ H[FLWH $GLS VSRQ 7KHD PLQH 7KHZ GLSF W0DGGR[0DUN/%URQJHUVPD6HWK5% VXUIDFHSODVPRQFRXSOLQJYLDDQ2WW " JK U W- DWH- DOV S- DQG )7Ζ5 0&7 Ɩ 1 FFT SULVP semiconductor VSS UHȵHFWDQFH DLUJDS Ɩ k SULVPOLJKWOLQH VSSGLVSHUVLRQ
  25. Doping affects the ATR dip location More doping Attenuated total

    reflectance Wavelength [microns] ~1020 cm-3 ~1018 cm-3
  26. Air gap-dependence confirms SPP coupling 6 7 8 9 10

    40 50 60 70 80 90 100 110 Attenuated total reflectance Wavelength [microns] shrinking air gap
  27. ATR lets us use SPPs to characterize InAs •Dopant activation

    •Effective mass •Scattering time We can now measure
  28. We can also derive the optical properties of InAs 100

    80 60 40 20 0 20 1000 2000 3000 4000 5000 6000 0 1 2 3 4 5 6 7 8 9 _2{ } AK{ } Wavenumbers [1/cm]