$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommending What Video to Watch Next: A Multit...
Search
alpicola
October 05, 2019
Research
1
910
Recommending What Video to Watch Next: A Multitask Ranking System
alpicola
October 05, 2019
Tweet
Share
More Decks by alpicola
See All by alpicola
商品レコメンドでのexplicit negative feedbackの活用
alpicola
2
920
Offline A/B testing for Recommender Systems
alpicola
0
2.2k
Kibanaを用いたアクセスログ調査と解析 / Access Log Analysis Using Kibana
alpicola
0
990
Other Decks in Research
See All in Research
説明可能な機械学習と数理最適化
kelicht
2
780
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
710
POI: Proof of Identity
katsyoshi
0
120
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
5
940
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
160
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
480
Remote sensing × Multi-modal meta survey
satai
4
650
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
340
Featured
See All Featured
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
100
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
How to build a perfect <img>
jonoalderson
0
4.7k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Thoughts on Productivity
jonyablonski
73
5k
How to Talk to Developers About Accessibility
jct
1
85
Tell your own story through comics
letsgokoyo
0
770
Building AI with AI
inesmontani
PRO
1
580
For a Future-Friendly Web
brad_frost
180
10k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Transcript
Recommending What Video to Watch Next: A Multitask Ranking System
田中 涼 @alpicola (SmartNews)
論文の紹介 今回の RecSys long papers に Google の論文が2本 - Recommending
What Video to Watch Next: A Multitask Ranking System [Z Zhao et al.] - Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations [X Yi et al.]
Retrieve & Ranking アーキテクチャ Retrieve Database Ranking 数百 数十 今日はここの話
問題設定 - YouTube の「次の動画」 - Implicit feedback - Multi-objective -
User engagement (click, watch) - User satisfaction (like, share) - スケーラビリティの要求 - “billions of items and users” - Ranking フェーズ
論文の貢献 - Multi-gate Mixture-of-Expert (MMoE) [KDD 2018] によるマルチ タスク学習 -
Wide & Deep [DLRS 2016] 風の選択バイアスの削減手法 - YouTube プロダクション環境での実験
None
MMoE バイアス 削減
Multi-gate Mixture-of-Expert (MMoE) [J Ma et al., KDD 2018] -
マルチタスク学習の手法 - Shared-Bottom model (左) と比べ、タスク間の相関による悪 影響を受けにくい
学習データの選択バイアス - 特にここでは表示位置によるバイアス (position bias) - ランキング上位がクリックされやすい
選択バイアスの削減 - ‘Shallow’ tower (Wide & Deep の wide) で位置バイ
アスを表現 - User engagementのタスク が対象 - 学習時 position feature に はモデルが依存すぎないよ う drop-out をかける
実験結果 (MMoE) - ベースラインはShared-Bottom - ユニット数を調整して同じ計算コストあたりのパフォーマンスを 比べる
実験結果 (バイアス削減) - ベースライン - Input Feature: position featureを他の入力と一緒に使う -
Adversarial Loss: Adversarial Discriminative Domain Adaptation [CVPR 2017] などの手法を応用
著者らによる補足 (5.4 Discussion) - プロダクションで提供するときのコストを考え、 単純でわかりやすいモデル・手法を好んで使った - 他の手法は以下の理由でマッチしないことが多かった - マルチモーダルな入力
- Multi-objective - Noisy で sparse なデータ - スケーラビリティ - 分散環境での学習
私の感想 - よりよい user satisfaction のために - マルチタスク学習として解くのはよさそう - Shared-Bottom
でも十分かも - 各タスクのスコアはどう使う? - 論文では手動設定重みによる weighted sum - バイアス削減 - シンプルな実装なのはよい - インパクトは出てるのだろうか?