Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommending What Video to Watch Next: A Multit...
Search
alpicola
October 05, 2019
Research
1
820
Recommending What Video to Watch Next: A Multitask Ranking System
alpicola
October 05, 2019
Tweet
Share
More Decks by alpicola
See All by alpicola
Offline A/B testing for Recommender Systems
alpicola
0
1.9k
Kibanaを用いたアクセスログ調査と解析 / Access Log Analysis Using Kibana
alpicola
0
860
Other Decks in Research
See All in Research
外積やロドリゲスの回転公式を利用した点群の回転
kentaitakura
1
650
20240918 交通くまもとーく 未来の鉄道網編(太田恒平)
trafficbrain
0
230
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
140
クラウドソーシングによる学習データ作成と品質管理(セキュリティキャンプ2024全国大会D2講義資料)
takumi1001
0
290
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
260
MIRU2024_招待講演_RALF_in_CVPR2024
udonda
1
330
Global Evidence Summit (GES) 参加報告
daimoriwaki
0
150
工学としてのSRE再訪 / Revisiting SRE as Engineering
yuukit
19
11k
[依頼講演] 適応的実験計画法に基づく効率的無線システム設計
k_sato
0
130
The Fellowship of Trust in AI
tomzimmermann
0
130
LiDARとカメラのセンサーフュージョンによる点群からのノイズ除去
kentaitakura
0
130
Whoisの闇
hirachan
3
140
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
52
13k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
KATA
mclloyd
29
14k
Become a Pro
speakerdeck
PRO
25
5k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
YesSQL, Process and Tooling at Scale
rocio
169
14k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
44
2.2k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
26
2.1k
Building Your Own Lightsaber
phodgson
103
6.1k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
Happy Clients
brianwarren
98
6.7k
Transcript
Recommending What Video to Watch Next: A Multitask Ranking System
田中 涼 @alpicola (SmartNews)
論文の紹介 今回の RecSys long papers に Google の論文が2本 - Recommending
What Video to Watch Next: A Multitask Ranking System [Z Zhao et al.] - Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations [X Yi et al.]
Retrieve & Ranking アーキテクチャ Retrieve Database Ranking 数百 数十 今日はここの話
問題設定 - YouTube の「次の動画」 - Implicit feedback - Multi-objective -
User engagement (click, watch) - User satisfaction (like, share) - スケーラビリティの要求 - “billions of items and users” - Ranking フェーズ
論文の貢献 - Multi-gate Mixture-of-Expert (MMoE) [KDD 2018] によるマルチ タスク学習 -
Wide & Deep [DLRS 2016] 風の選択バイアスの削減手法 - YouTube プロダクション環境での実験
None
MMoE バイアス 削減
Multi-gate Mixture-of-Expert (MMoE) [J Ma et al., KDD 2018] -
マルチタスク学習の手法 - Shared-Bottom model (左) と比べ、タスク間の相関による悪 影響を受けにくい
学習データの選択バイアス - 特にここでは表示位置によるバイアス (position bias) - ランキング上位がクリックされやすい
選択バイアスの削減 - ‘Shallow’ tower (Wide & Deep の wide) で位置バイ
アスを表現 - User engagementのタスク が対象 - 学習時 position feature に はモデルが依存すぎないよ う drop-out をかける
実験結果 (MMoE) - ベースラインはShared-Bottom - ユニット数を調整して同じ計算コストあたりのパフォーマンスを 比べる
実験結果 (バイアス削減) - ベースライン - Input Feature: position featureを他の入力と一緒に使う -
Adversarial Loss: Adversarial Discriminative Domain Adaptation [CVPR 2017] などの手法を応用
著者らによる補足 (5.4 Discussion) - プロダクションで提供するときのコストを考え、 単純でわかりやすいモデル・手法を好んで使った - 他の手法は以下の理由でマッチしないことが多かった - マルチモーダルな入力
- Multi-objective - Noisy で sparse なデータ - スケーラビリティ - 分散環境での学習
私の感想 - よりよい user satisfaction のために - マルチタスク学習として解くのはよさそう - Shared-Bottom
でも十分かも - 各タスクのスコアはどう使う? - 論文では手動設定重みによる weighted sum - バイアス削減 - シンプルな実装なのはよい - インパクトは出てるのだろうか?