Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommending What Video to Watch Next: A Multit...
Search
alpicola
October 05, 2019
Research
1
890
Recommending What Video to Watch Next: A Multitask Ranking System
alpicola
October 05, 2019
Tweet
Share
More Decks by alpicola
See All by alpicola
商品レコメンドでのexplicit negative feedbackの活用
alpicola
2
780
Offline A/B testing for Recommender Systems
alpicola
0
2.1k
Kibanaを用いたアクセスログ調査と解析 / Access Log Analysis Using Kibana
alpicola
0
960
Other Decks in Research
See All in Research
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
320
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
510
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
580
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
7
4k
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
0
340
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
120
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
130
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
280
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
180
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
260
投資戦略202508
pw
0
560
【緊急警告】日本の未来設計図 ~沈没か、再生か。国民と断行するラストチャンス~
yuutakasan
0
150
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Navigating Team Friction
lara
189
15k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
How GitHub (no longer) Works
holman
315
140k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Statistics for Hackers
jakevdp
799
220k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
A Modern Web Designer's Workflow
chriscoyier
696
190k
Transcript
Recommending What Video to Watch Next: A Multitask Ranking System
田中 涼 @alpicola (SmartNews)
論文の紹介 今回の RecSys long papers に Google の論文が2本 - Recommending
What Video to Watch Next: A Multitask Ranking System [Z Zhao et al.] - Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations [X Yi et al.]
Retrieve & Ranking アーキテクチャ Retrieve Database Ranking 数百 数十 今日はここの話
問題設定 - YouTube の「次の動画」 - Implicit feedback - Multi-objective -
User engagement (click, watch) - User satisfaction (like, share) - スケーラビリティの要求 - “billions of items and users” - Ranking フェーズ
論文の貢献 - Multi-gate Mixture-of-Expert (MMoE) [KDD 2018] によるマルチ タスク学習 -
Wide & Deep [DLRS 2016] 風の選択バイアスの削減手法 - YouTube プロダクション環境での実験
None
MMoE バイアス 削減
Multi-gate Mixture-of-Expert (MMoE) [J Ma et al., KDD 2018] -
マルチタスク学習の手法 - Shared-Bottom model (左) と比べ、タスク間の相関による悪 影響を受けにくい
学習データの選択バイアス - 特にここでは表示位置によるバイアス (position bias) - ランキング上位がクリックされやすい
選択バイアスの削減 - ‘Shallow’ tower (Wide & Deep の wide) で位置バイ
アスを表現 - User engagementのタスク が対象 - 学習時 position feature に はモデルが依存すぎないよ う drop-out をかける
実験結果 (MMoE) - ベースラインはShared-Bottom - ユニット数を調整して同じ計算コストあたりのパフォーマンスを 比べる
実験結果 (バイアス削減) - ベースライン - Input Feature: position featureを他の入力と一緒に使う -
Adversarial Loss: Adversarial Discriminative Domain Adaptation [CVPR 2017] などの手法を応用
著者らによる補足 (5.4 Discussion) - プロダクションで提供するときのコストを考え、 単純でわかりやすいモデル・手法を好んで使った - 他の手法は以下の理由でマッチしないことが多かった - マルチモーダルな入力
- Multi-objective - Noisy で sparse なデータ - スケーラビリティ - 分散環境での学習
私の感想 - よりよい user satisfaction のために - マルチタスク学習として解くのはよさそう - Shared-Bottom
でも十分かも - 各タスクのスコアはどう使う? - 論文では手動設定重みによる weighted sum - バイアス削減 - シンプルな実装なのはよい - インパクトは出てるのだろうか?