Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Offline A/B testing for Recommender Systems
Search
alpicola
November 20, 2018
Technology
0
1.9k
Offline A/B testing for Recommender Systems
alpicola
November 20, 2018
Tweet
Share
More Decks by alpicola
See All by alpicola
Recommending What Video to Watch Next: A Multitask Ranking System
alpicola
1
820
Kibanaを用いたアクセスログ調査と解析 / Access Log Analysis Using Kibana
alpicola
0
860
Other Decks in Technology
See All in Technology
インフラとバックエンドとフロントエンドをくまなく調べて遅いアプリを早くした件
tubone24
1
430
これまでの計測・開発・デプロイ方法全部見せます! / Findy ISUCON 2024-11-14
tohutohu
3
370
Shopifyアプリ開発における Shopifyの機能活用
sonatard
4
250
Flutterによる 効率的なAndroid・iOS・Webアプリケーション開発の事例
recruitengineers
PRO
0
110
Terraform Stacks入門 #HashiTalks
msato
0
350
BLADE: An Attempt to Automate Penetration Testing Using Autonomous AI Agents
bbrbbq
0
310
適材適所の技術選定 〜GraphQL・REST API・tRPC〜 / Optimal Technology Selection
kakehashi
1
630
マルチモーダル / AI Agent / LLMOps 3つの技術トレンドで理解するLLMの今後の展望
hirosatogamo
37
12k
DynamoDB でスロットリングが発生したとき/when_throttling_occurs_in_dynamodb_short
emiki
0
210
アジャイルでの品質の進化 Agile in Motion vol.1/20241118 Hiroyuki Sato
shift_evolve
0
160
OCI Network Firewall 概要
oracle4engineer
PRO
0
4.1k
The Role of Developer Relations in AI Product Success.
giftojabu1
0
130
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
410
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Music & Morning Musume
bryan
46
6.2k
Six Lessons from altMBA
skipperchong
27
3.5k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Agile that works and the tools we love
rasmusluckow
327
21k
BBQ
matthewcrist
85
9.3k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Raft: Consensus for Rubyists
vanstee
136
6.6k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
Transcript
Offline A/B testing for Recommender Systems ͯͳ ాத (alpicola) @
จಡΈձ 11/19 1
Offline A/B testing for Recommender Systems — CriteoͷWSDM'18ͷจ — SpotifyͷRecSys'18จͰݴٴ
2
Offline A/B testing for Recommender Systems — CriteoͷWSDM'18ͷจ — SpotifyͷRecSys'18จͰݴٴ
— ΫοΫύου։࠵ͷಡΈձͰ͢Ͱʹհ͞Ε͍ͯͨ — ͕ɺվΊͯ۷ΓԼ͕͛ͨͰ͖Εͱࢥ͍·͢ 3
ΦϑϥΠϯABςετ? — ΦϯϥΠϯͰߦ͏ABςετ࣌ؒͱ͕͔͔ۚΔ — ΦϑϥΠϯͰͦΕʹ͍ۙධՁ͕ߦ͑ΕΞϧΰϦζ ϜվળͷαΠΫϧΛߴԽͰ͖Δ — Ͱਫ਼? ! 4
ϩάʹجͮ͘ΦϑϥΠϯධՁͷݚڀ — Counterfactual estimationͱ͔off-policy estimationͱ ݺΕΔ — WSDM'15ͷνϡʔτϦΞϧ — SIGIR'16ͷνϡʔτϦΞϧ
— ධՁ͚ͩͰͳֶ͘शͷతؔʹ͏͜ͱͰ͖Δ — ͜ͷจͰධՁͷΈΛѻ͏ 5
จͷߩݙ — ΦϑϥΠϯABςετͰ༻͍Δใुͷਪఆख๏NCISͷ ͋Δछͷ࠷దੑΛࣔ͢ — ͜ͷݟʹج͍ͮͯNCISͷ֦ுPieceNCISͱ PointNCISΛఏҊ — ΦϯϥΠϯABςετ݁Ռͱͷ૬͕ؔେ্͖͘ 6
ઃఆ — Top-k ϥϯΩϯά — : ϩά — : ίϯςΩετ
— : ΞΫγϣϯ — : ใु 7
ઃఆ — : ίϯςΩετ͔ΒΞΫγϣϯΛબͿϙϦγʔ — : ݱߦͷϙϦγʔ — : ςετ͍ͨ͠ϙϦγʔ
— : ฏۉॲஔޮՌ — ͜ΕΛਪఆ͍ͨ͠ 8
ઃఆ — ΦϯϥΠϯABςετ — ͷݩͰͷϩάͱ ͷݩͰͷϩά͕͋Δ — ඪຊฏۉͰ , ͦΕͧΕਪఆ
— ΦϑϥΠϯABςετ — ͷݩͰͷϩά͔Β ਪఆ ! 9
ैདྷख๏ — Importance sampling (IS) — Normalized importance sampling (NIS)
— Doubly robust estimator (DR) — Capped importance sampling (CIS) — Normalized capped importance sampling (NCIS) ౷ܭϞϯςΧϧϩ๏ͷจ຺Ͱొ 10
Importance sampling (IS) — ! όΠΞε͕ͳ͍ — — " ʹΑΔߴόϦΞϯε
(unbounded) — όϦΞϯε͕େ͖͍ͱ ͱ ΛൺֱͰ͖ͳ͍ 11
Normalized importance sampling (NIS) Λͬͯ Λஔ͖͑ — ! ҰகਪఆྔʹͳΔ —
— " ґવͱͯ͠όϦΞϯεେ 12
Capped importance sampling (CIS) ॏΈͷ࠷େΛ ʹ (max capping) ॏΈ͕ Ҏ্ͷ߲ࣺͯΔ
(zero capping) 13
CISͷόΠΞε 14
CISͷόΠΞε — όΠΞε ͷ࣌ͷ Ͱbound͞ΕΔ — — ใु͕େ͖͍ͱ͜ΖΛऔΕΔΑ͏ʹվળ͍ͨ͠ ͕ͦ͏͢ΔͱόΠΞε͕େ͖͘ͳΔ !
15
CISͷόΠΞε Cappingͷઃఆʹ͍͍τϨʔυΦϑ͕ଘࡏ͠ͳ͍ ! 16
Normalized capped importance sampling (NCIS) NIS, CIS྆ํͷΞΠσΞΛ࣋ͪࠐΉ 17
NCISͱCISͷؔ 18
NCISͱCISͷؔ CIS͕͍࣋ͬͯͨόΠΞε Λୈೋ߲ͰϞσϧ ͍ͯ͠ΔͱݟͳͤΔ 19
NCISͱCISͷؔ (ಛʹzero cappingͷ࣌) 20
NCISͱCISͷؔ (ಛʹzero cappingͷ࣌) — ͳΒۙతʹόΠΞ ε͕ͳ͘ͳΔ ! — ͷ ,
ʹର͢Δґଘ͕খ͍࣌͞ͳͲ 21
NCISͷόΠΞε 22
NCISͷόΠΞε — ͱcappingͷ༗ແʹ૬͕ؔ͋ΔͱόΠΞε͕େ͖͘ ͳΔ ! — ަབྷҼࢠϢʔβʔͷλΠϓͳͲ͕ߟ͑ΒΕΔ (Table 1) 23
NCISͷόΠΞε 24
จͷΞΠσΞ — ͷϞσϦϯάΛάϩʔόϧ㱺ϩʔΧϧʹ — ίϯςΩετ ʹରͯ͠ہॴతͳNCIS — ͱcappingͷ૬ؔΛݮΒ͢ — Piecewise
NCIS: ׂ͞ΕͨྖҬ͝ͱʹNCIS — Pointwise NCIS: ཁૉ͝ͱʹNCIS 25
Piecewise NCIS (PieceNCIS) ίϯςΩετͷू߹ ͷׂ Λߟ͑Δ 26
Piecewise NCIS (PieceNCIS) ׂ֤ʹରͯ͠NCIS 27
ׂͷྫ దͳؔ ΛఆΊͯ ֤ Ͱ ͷ ʹର͢Δґଘ͕খ͘͞ͳΔΑ͏ʹ 28
Pointwise NCIS (PointNCIS) ཁૉ୯ҐͰׂ͢Δ (i.e. ) ಛఆͷίϯςΩετʹର͢Δαϯϓϧ͘͝গͳ͍ͷ ͰૉʹNCISΛద༻Ͱ͖ͳ͍ 29
Pointwise NCIS (PointNCIS) — ΞΫγϣϯʹ͍ͭͯपลԽ͢Δ ͱਖ਼֬ʹٻΊΒΕΔ — ΞΫγϣϯͷ͕ଟ͍ͱܭࢉ͕ߴίετ ! —
ΛαϯϓϦϯάͰٻΊΔ 30
Midzuno-Sen method 1. Λαϯϓϧ 2. Λ ͔Β ͳͷ͕ಘΒΕΔ·Ͱαϯϓϧ 3. Λ
͔Βαϯϓϧ 4. Λฦ͢ ͜͏ͯ͠ಘΒΕΔΛ ͱॻ͘ 31
Pointwise NCIS (PointNCIS) — ͷ͏ͪ ͕ ͷσʔλແࢹͰ͖Δ — ใु͕εύʔεͳ࣌ʹޮతʹܭࢉͰ͖Δ !
32
࣮ݧ — ϓϩϓϥΠΤλϦͷσʔληοτ — 39छɺ߹ܭͰઍԯ݅ͷϩάσʔλ — ΫϦοΫϕʔεͷใु (εύʔε͔ͭࢄେ) — ରCIS,
NCIS, PieceNCIS, PointNCIS ( ) — IS, NISόϦΞϯε͕ߴ͗͢ΔͷͰআ֎ 33
ΦϯϥΠϯʗΦϑϥΠϯABςετͷ૬ؔ 34
ద߹ͱِӄੑ ʮ ͕ ΑΓΑ͍͔Ͳ͏͔ʯͷ2༧ଌͱͯ͠ݟΔ 35
࣮ݧ݁Ռͷ·ͱΊ — CIS૬͕ؔෛ — શମతʹΊͷਪఆ͕ग़͍ͯͨ (Figure 4) — CIS⇒NCISͰେ͖͘վળ —
NCIS⇒PointNCISͰِཅੑ͕͞ΒʹԼ͕Δ — ద߹NCISҎޙͦ͜·ͰΑ͘ͳΒͳ͍ — ࣮ߦʹ͓͍ͯਫ਼ʹ͓͍ͯPointNCIS͕Α͍ 36
Appendix — ͕খ͍͞ͱ ͕ cappingΛ͑Δ͜ͱ — Max cappingͰ ʹͳΔΑ͏ͳ ৽͍͠capping
͕ͱΕΔ (Lemma A.3) 37