Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Offline A/B testing for Recommender Systems
Search
alpicola
November 20, 2018
Technology
0
2.1k
Offline A/B testing for Recommender Systems
alpicola
November 20, 2018
Tweet
Share
More Decks by alpicola
See All by alpicola
商品レコメンドでのexplicit negative feedbackの活用
alpicola
2
900
Recommending What Video to Watch Next: A Multitask Ranking System
alpicola
1
910
Kibanaを用いたアクセスログ調査と解析 / Access Log Analysis Using Kibana
alpicola
0
990
Other Decks in Technology
See All in Technology
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
220
小さな判断で育つ、大きな意思決定力 / 20251204 Takahiro Kinjo
shift_evolve
PRO
1
580
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
290
【pmconf2025】PdMの「責任感」がチームを弱くする?「分業型」から全員がユーザー価値に本気で向き合う「共創型開発チーム」への変遷
toshimasa012345
0
280
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
学習データって増やせばいいんですか?
ftakahashi
2
280
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
120
打 造 A I 驅 動 的 G i t H u b ⾃ 動 化 ⼯ 作 流 程
appleboy
0
200
乗りこなせAI駆動開発の波
eltociear
1
1k
Overture Maps Foundationの3年を振り返る
moritoru
0
160
A Compass of Thought: Guiding the Future of Test Automation ( #jassttokai25 , #jassttokai )
teyamagu
PRO
1
250
MapKitとオープンデータで実現する地図情報の拡張と可視化
zozotech
PRO
1
130
Featured
See All Featured
Done Done
chrislema
186
16k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
KATA
mclloyd
PRO
32
15k
Fireside Chat
paigeccino
41
3.7k
Agile that works and the tools we love
rasmusluckow
331
21k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
The Invisible Side of Design
smashingmag
302
51k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Transcript
Offline A/B testing for Recommender Systems ͯͳ ాத (alpicola) @
จಡΈձ 11/19 1
Offline A/B testing for Recommender Systems — CriteoͷWSDM'18ͷจ — SpotifyͷRecSys'18จͰݴٴ
2
Offline A/B testing for Recommender Systems — CriteoͷWSDM'18ͷจ — SpotifyͷRecSys'18จͰݴٴ
— ΫοΫύου։࠵ͷಡΈձͰ͢Ͱʹհ͞Ε͍ͯͨ — ͕ɺվΊͯ۷ΓԼ͕͛ͨͰ͖Εͱࢥ͍·͢ 3
ΦϑϥΠϯABςετ? — ΦϯϥΠϯͰߦ͏ABςετ࣌ؒͱ͕͔͔ۚΔ — ΦϑϥΠϯͰͦΕʹ͍ۙධՁ͕ߦ͑ΕΞϧΰϦζ ϜվળͷαΠΫϧΛߴԽͰ͖Δ — Ͱਫ਼? ! 4
ϩάʹجͮ͘ΦϑϥΠϯධՁͷݚڀ — Counterfactual estimationͱ͔off-policy estimationͱ ݺΕΔ — WSDM'15ͷνϡʔτϦΞϧ — SIGIR'16ͷνϡʔτϦΞϧ
— ධՁ͚ͩͰͳֶ͘शͷతؔʹ͏͜ͱͰ͖Δ — ͜ͷจͰධՁͷΈΛѻ͏ 5
จͷߩݙ — ΦϑϥΠϯABςετͰ༻͍Δใुͷਪఆख๏NCISͷ ͋Δछͷ࠷దੑΛࣔ͢ — ͜ͷݟʹج͍ͮͯNCISͷ֦ுPieceNCISͱ PointNCISΛఏҊ — ΦϯϥΠϯABςετ݁Ռͱͷ૬͕ؔେ্͖͘ 6
ઃఆ — Top-k ϥϯΩϯά — : ϩά — : ίϯςΩετ
— : ΞΫγϣϯ — : ใु 7
ઃఆ — : ίϯςΩετ͔ΒΞΫγϣϯΛબͿϙϦγʔ — : ݱߦͷϙϦγʔ — : ςετ͍ͨ͠ϙϦγʔ
— : ฏۉॲஔޮՌ — ͜ΕΛਪఆ͍ͨ͠ 8
ઃఆ — ΦϯϥΠϯABςετ — ͷݩͰͷϩάͱ ͷݩͰͷϩά͕͋Δ — ඪຊฏۉͰ , ͦΕͧΕਪఆ
— ΦϑϥΠϯABςετ — ͷݩͰͷϩά͔Β ਪఆ ! 9
ैདྷख๏ — Importance sampling (IS) — Normalized importance sampling (NIS)
— Doubly robust estimator (DR) — Capped importance sampling (CIS) — Normalized capped importance sampling (NCIS) ౷ܭϞϯςΧϧϩ๏ͷจ຺Ͱొ 10
Importance sampling (IS) — ! όΠΞε͕ͳ͍ — — " ʹΑΔߴόϦΞϯε
(unbounded) — όϦΞϯε͕େ͖͍ͱ ͱ ΛൺֱͰ͖ͳ͍ 11
Normalized importance sampling (NIS) Λͬͯ Λஔ͖͑ — ! ҰகਪఆྔʹͳΔ —
— " ґવͱͯ͠όϦΞϯεେ 12
Capped importance sampling (CIS) ॏΈͷ࠷େΛ ʹ (max capping) ॏΈ͕ Ҏ্ͷ߲ࣺͯΔ
(zero capping) 13
CISͷόΠΞε 14
CISͷόΠΞε — όΠΞε ͷ࣌ͷ Ͱbound͞ΕΔ — — ใु͕େ͖͍ͱ͜ΖΛऔΕΔΑ͏ʹվળ͍ͨ͠ ͕ͦ͏͢ΔͱόΠΞε͕େ͖͘ͳΔ !
15
CISͷόΠΞε Cappingͷઃఆʹ͍͍τϨʔυΦϑ͕ଘࡏ͠ͳ͍ ! 16
Normalized capped importance sampling (NCIS) NIS, CIS྆ํͷΞΠσΞΛ࣋ͪࠐΉ 17
NCISͱCISͷؔ 18
NCISͱCISͷؔ CIS͕͍࣋ͬͯͨόΠΞε Λୈೋ߲ͰϞσϧ ͍ͯ͠ΔͱݟͳͤΔ 19
NCISͱCISͷؔ (ಛʹzero cappingͷ࣌) 20
NCISͱCISͷؔ (ಛʹzero cappingͷ࣌) — ͳΒۙతʹόΠΞ ε͕ͳ͘ͳΔ ! — ͷ ,
ʹର͢Δґଘ͕খ͍࣌͞ͳͲ 21
NCISͷόΠΞε 22
NCISͷόΠΞε — ͱcappingͷ༗ແʹ૬͕ؔ͋ΔͱόΠΞε͕େ͖͘ ͳΔ ! — ަབྷҼࢠϢʔβʔͷλΠϓͳͲ͕ߟ͑ΒΕΔ (Table 1) 23
NCISͷόΠΞε 24
จͷΞΠσΞ — ͷϞσϦϯάΛάϩʔόϧ㱺ϩʔΧϧʹ — ίϯςΩετ ʹରͯ͠ہॴతͳNCIS — ͱcappingͷ૬ؔΛݮΒ͢ — Piecewise
NCIS: ׂ͞ΕͨྖҬ͝ͱʹNCIS — Pointwise NCIS: ཁૉ͝ͱʹNCIS 25
Piecewise NCIS (PieceNCIS) ίϯςΩετͷू߹ ͷׂ Λߟ͑Δ 26
Piecewise NCIS (PieceNCIS) ׂ֤ʹରͯ͠NCIS 27
ׂͷྫ దͳؔ ΛఆΊͯ ֤ Ͱ ͷ ʹର͢Δґଘ͕খ͘͞ͳΔΑ͏ʹ 28
Pointwise NCIS (PointNCIS) ཁૉ୯ҐͰׂ͢Δ (i.e. ) ಛఆͷίϯςΩετʹର͢Δαϯϓϧ͘͝গͳ͍ͷ ͰૉʹNCISΛద༻Ͱ͖ͳ͍ 29
Pointwise NCIS (PointNCIS) — ΞΫγϣϯʹ͍ͭͯपลԽ͢Δ ͱਖ਼֬ʹٻΊΒΕΔ — ΞΫγϣϯͷ͕ଟ͍ͱܭࢉ͕ߴίετ ! —
ΛαϯϓϦϯάͰٻΊΔ 30
Midzuno-Sen method 1. Λαϯϓϧ 2. Λ ͔Β ͳͷ͕ಘΒΕΔ·Ͱαϯϓϧ 3. Λ
͔Βαϯϓϧ 4. Λฦ͢ ͜͏ͯ͠ಘΒΕΔΛ ͱॻ͘ 31
Pointwise NCIS (PointNCIS) — ͷ͏ͪ ͕ ͷσʔλແࢹͰ͖Δ — ใु͕εύʔεͳ࣌ʹޮతʹܭࢉͰ͖Δ !
32
࣮ݧ — ϓϩϓϥΠΤλϦͷσʔληοτ — 39छɺ߹ܭͰઍԯ݅ͷϩάσʔλ — ΫϦοΫϕʔεͷใु (εύʔε͔ͭࢄେ) — ରCIS,
NCIS, PieceNCIS, PointNCIS ( ) — IS, NISόϦΞϯε͕ߴ͗͢ΔͷͰআ֎ 33
ΦϯϥΠϯʗΦϑϥΠϯABςετͷ૬ؔ 34
ద߹ͱِӄੑ ʮ ͕ ΑΓΑ͍͔Ͳ͏͔ʯͷ2༧ଌͱͯ͠ݟΔ 35
࣮ݧ݁Ռͷ·ͱΊ — CIS૬͕ؔෛ — શମతʹΊͷਪఆ͕ग़͍ͯͨ (Figure 4) — CIS⇒NCISͰେ͖͘վળ —
NCIS⇒PointNCISͰِཅੑ͕͞ΒʹԼ͕Δ — ద߹NCISҎޙͦ͜·ͰΑ͘ͳΒͳ͍ — ࣮ߦʹ͓͍ͯਫ਼ʹ͓͍ͯPointNCIS͕Α͍ 36
Appendix — ͕খ͍͞ͱ ͕ cappingΛ͑Δ͜ͱ — Max cappingͰ ʹͳΔΑ͏ͳ ৽͍͠capping
͕ͱΕΔ (Lemma A.3) 37