Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
VANET Simulation of AP assistance
Search
Andro Chen Chun-An
June 13, 2011
Research
0
45
VANET Simulation of AP assistance
2011-06-13 VANET Simulation of AP assistance
Final Project of 無線網路導論, 魏宏宇副教授 @ NTUEE
Andro Chen Chun-An
June 13, 2011
Tweet
Share
More Decks by Andro Chen Chun-An
See All by Andro Chen Chun-An
入坑滑雪自由行: 新手入門懶人包 - 雪場,費用,行程,行李,訓練 全攻略
androchentw
0
18
2021-02-17_splunk_cafe.pdf
androchentw
0
80
When Andro Meets Android - Android Taipei
androchentw
0
200
What I've Learned From Startups
androchentw
0
100
Baidu SEO II
androchentw
1
90
Basic HTML + SEO - A Simple Tutorial @5945
androchentw
0
53
Baidu SEO - A Practical Guide
androchentw
0
61
Privacy-Preserving Data Mining and Collusion Resistance
androchentw
0
52
啡˙聞
androchentw
1
60
Other Decks in Research
See All in Research
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
2
140
説明可能な機械学習と数理最適化
kelicht
2
730
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
150
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
POI: Proof of Identity
katsyoshi
0
120
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.5k
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
400
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
110
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
280
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
300
Featured
See All Featured
Google's AI Overviews - The New Search
badams
0
860
The Mindset for Success: Future Career Progression
greggifford
PRO
0
180
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
86
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
740
Game over? The fight for quality and originality in the time of robots
wayneb77
1
58
Tell your own story through comics
letsgokoyo
0
740
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
47k
How to Ace a Technical Interview
jacobian
281
24k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
60
37k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Transcript
VANET Simulation of AP Assistance AP協助下的車用無線網路模擬 B97901015 陳俊安 B97901087 林蓉瑄
B97901098 周伯威
Introduction • VANET module: MOVE – MObility model generator for
VEhicular networks • AODV+ – use AODV for simulations of wired-cum-wireless scenarios
Motive • Improve VANET performance – Using APs in the
city – Fast & reliable Ethernet • But “where are you?” – If we don’t use Mobile IP… • Implement AODV+ on both wired and wireless nodes
Experiment Design • Car numbers – 9, 26, 32, 44,
55, 65 • AP numbers – 0, 4, 9(3x3), 16, 25, …, 100 • Random traffic – Using MOVE
Modification • AODV+ does not work – wired <--> wireless
– wireless -> wired -> wireless ? • Alternative – motionless cars act as APs
Performance • Success ratio • Pong RTT – Average –
Standard deviation
• In XGraph Success ratio
• In XGraph Average
• In XGraph Standard Deviation
Graph analysis Cars # 9 26 32 44 55 65
Best AP # 9 16 16 9 9 9 Start to drop 81 36 49 36 36 36 Best AP#/Car# 1.00 0.62 0.50 0.20 0.16 0.14 Success ratio 83.26 94.78 90.68 92.68 92.93 96.18 Best = highest success ra.o
Conclusion • Too much water drowned the miller – When
mobility and density is low, AP counts • Trade-off – High transmission rate – Extra routing table overhead
Q & A
Thank you