Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
VANET Simulation of AP assistance
Search
Andro Chen Chun-An
June 13, 2011
Research
0
42
VANET Simulation of AP assistance
2011-06-13 VANET Simulation of AP assistance
Final Project of 無線網路導論, 魏宏宇副教授 @ NTUEE
Andro Chen Chun-An
June 13, 2011
Tweet
Share
More Decks by Andro Chen Chun-An
See All by Andro Chen Chun-An
入坑滑雪自由行: 新手入門懶人包 - 雪場,費用,行程,行李,訓練 全攻略
androchentw
0
10
2021-02-17_splunk_cafe.pdf
androchentw
0
74
When Andro Meets Android - Android Taipei
androchentw
0
190
What I've Learned From Startups
androchentw
0
93
Baidu SEO II
androchentw
1
85
Basic HTML + SEO - A Simple Tutorial @5945
androchentw
0
52
Baidu SEO - A Practical Guide
androchentw
0
55
Privacy-Preserving Data Mining and Collusion Resistance
androchentw
0
49
啡˙聞
androchentw
1
55
Other Decks in Research
See All in Research
20250725-bet-ai-day
cipepser
2
150
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
260
20250502_ABEJA_論文読み会_スライド
flatton
0
180
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
200
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
330
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
220
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
110
Computational OT #1 - Monge and Kantorovitch
gpeyre
0
200
Self-supervised audiovisual representation learning for remote sensing data
satai
3
230
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
660
Submeter-level land cover mapping of Japan
satai
3
150
SkySense : A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery
satai
3
270
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Fireside Chat
paigeccino
37
3.5k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Music & Morning Musume
bryan
46
6.7k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
Scaling GitHub
holman
461
140k
Side Projects
sachag
455
43k
The Pragmatic Product Professional
lauravandoore
35
6.8k
Site-Speed That Sticks
csswizardry
10
720
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
760
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
Transcript
VANET Simulation of AP Assistance AP協助下的車用無線網路模擬 B97901015 陳俊安 B97901087 林蓉瑄
B97901098 周伯威
Introduction • VANET module: MOVE – MObility model generator for
VEhicular networks • AODV+ – use AODV for simulations of wired-cum-wireless scenarios
Motive • Improve VANET performance – Using APs in the
city – Fast & reliable Ethernet • But “where are you?” – If we don’t use Mobile IP… • Implement AODV+ on both wired and wireless nodes
Experiment Design • Car numbers – 9, 26, 32, 44,
55, 65 • AP numbers – 0, 4, 9(3x3), 16, 25, …, 100 • Random traffic – Using MOVE
Modification • AODV+ does not work – wired <--> wireless
– wireless -> wired -> wireless ? • Alternative – motionless cars act as APs
Performance • Success ratio • Pong RTT – Average –
Standard deviation
• In XGraph Success ratio
• In XGraph Average
• In XGraph Standard Deviation
Graph analysis Cars # 9 26 32 44 55 65
Best AP # 9 16 16 9 9 9 Start to drop 81 36 49 36 36 36 Best AP#/Car# 1.00 0.62 0.50 0.20 0.16 0.14 Success ratio 83.26 94.78 90.68 92.68 92.93 96.18 Best = highest success ra.o
Conclusion • Too much water drowned the miller – When
mobility and density is low, AP counts • Trade-off – High transmission rate – Extra routing table overhead
Q & A
Thank you