Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
VANET Simulation of AP assistance
Search
Andro Chen Chun-An
June 13, 2011
Research
0
42
VANET Simulation of AP assistance
2011-06-13 VANET Simulation of AP assistance
Final Project of 無線網路導論, 魏宏宇副教授 @ NTUEE
Andro Chen Chun-An
June 13, 2011
Tweet
Share
More Decks by Andro Chen Chun-An
See All by Andro Chen Chun-An
入坑滑雪自由行: 新手入門懶人包 - 雪場,費用,行程,行李,訓練 全攻略
androchentw
0
10
2021-02-17_splunk_cafe.pdf
androchentw
0
71
When Andro Meets Android - Android Taipei
androchentw
0
190
What I've Learned From Startups
androchentw
0
91
Baidu SEO II
androchentw
1
84
Basic HTML + SEO - A Simple Tutorial @5945
androchentw
0
51
Baidu SEO - A Practical Guide
androchentw
0
55
Privacy-Preserving Data Mining and Collusion Resistance
androchentw
0
49
啡˙聞
androchentw
1
54
Other Decks in Research
See All in Research
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
540
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
170
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
200
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
400
クラウドのテレメトリーシステム研究動向2025年
yuukit
3
950
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
210
チャッドローン:LLMによる画像認識を用いた自律型ドローンシステムの開発と実験 / ec75-morisaki
yumulab
1
430
RapidPen: AIエージェントによるペネトレーションテスト 初期侵入全自動化の研究
laysakura
0
1.4k
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
670
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
470
NLP2025参加報告会 LT資料
hargon24
1
310
学生向けアンケート<データサイエンティストについて>
datascientistsociety
PRO
0
2.8k
Featured
See All Featured
Site-Speed That Sticks
csswizardry
10
650
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
660
Making the Leap to Tech Lead
cromwellryan
134
9.3k
Documentation Writing (for coders)
carmenintech
71
4.9k
What's in a price? How to price your products and services
michaelherold
245
12k
YesSQL, Process and Tooling at Scale
rocio
173
14k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
GitHub's CSS Performance
jonrohan
1031
460k
Transcript
VANET Simulation of AP Assistance AP協助下的車用無線網路模擬 B97901015 陳俊安 B97901087 林蓉瑄
B97901098 周伯威
Introduction • VANET module: MOVE – MObility model generator for
VEhicular networks • AODV+ – use AODV for simulations of wired-cum-wireless scenarios
Motive • Improve VANET performance – Using APs in the
city – Fast & reliable Ethernet • But “where are you?” – If we don’t use Mobile IP… • Implement AODV+ on both wired and wireless nodes
Experiment Design • Car numbers – 9, 26, 32, 44,
55, 65 • AP numbers – 0, 4, 9(3x3), 16, 25, …, 100 • Random traffic – Using MOVE
Modification • AODV+ does not work – wired <--> wireless
– wireless -> wired -> wireless ? • Alternative – motionless cars act as APs
Performance • Success ratio • Pong RTT – Average –
Standard deviation
• In XGraph Success ratio
• In XGraph Average
• In XGraph Standard Deviation
Graph analysis Cars # 9 26 32 44 55 65
Best AP # 9 16 16 9 9 9 Start to drop 81 36 49 36 36 36 Best AP#/Car# 1.00 0.62 0.50 0.20 0.16 0.14 Success ratio 83.26 94.78 90.68 92.68 92.93 96.18 Best = highest success ra.o
Conclusion • Too much water drowned the miller – When
mobility and density is low, AP counts • Trade-off – High transmission rate – Extra routing table overhead
Q & A
Thank you