Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
VANET Simulation of AP assistance
Search
Andro Chen Chun-An
June 13, 2011
Research
0
45
VANET Simulation of AP assistance
2011-06-13 VANET Simulation of AP assistance
Final Project of 無線網路導論, 魏宏宇副教授 @ NTUEE
Andro Chen Chun-An
June 13, 2011
Tweet
Share
More Decks by Andro Chen Chun-An
See All by Andro Chen Chun-An
入坑滑雪自由行: 新手入門懶人包 - 雪場,費用,行程,行李,訓練 全攻略
androchentw
0
21
2021-02-17_splunk_cafe.pdf
androchentw
0
81
When Andro Meets Android - Android Taipei
androchentw
0
200
What I've Learned From Startups
androchentw
0
100
Baidu SEO II
androchentw
1
90
Basic HTML + SEO - A Simple Tutorial @5945
androchentw
0
55
Baidu SEO - A Practical Guide
androchentw
0
62
Privacy-Preserving Data Mining and Collusion Resistance
androchentw
0
52
啡˙聞
androchentw
1
60
Other Decks in Research
See All in Research
Nullspace MPC
mizuhoaoki
1
570
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
450
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.4k
説明可能な機械学習と数理最適化
kelicht
2
800
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
380
snlp2025_prevent_llm_spikes
takase
0
430
POI: Proof of Identity
katsyoshi
0
120
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
820
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
2
200
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
110
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
18k
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
520
Featured
See All Featured
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
130
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
0
51
Paper Plane (Part 1)
katiecoart
PRO
0
2.7k
What the history of the web can teach us about the future of AI
inesmontani
PRO
0
390
Crafting Experiences
bethany
0
25
How to Talk to Developers About Accessibility
jct
1
94
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
43
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
51k
Transcript
VANET Simulation of AP Assistance AP協助下的車用無線網路模擬 B97901015 陳俊安 B97901087 林蓉瑄
B97901098 周伯威
Introduction • VANET module: MOVE – MObility model generator for
VEhicular networks • AODV+ – use AODV for simulations of wired-cum-wireless scenarios
Motive • Improve VANET performance – Using APs in the
city – Fast & reliable Ethernet • But “where are you?” – If we don’t use Mobile IP… • Implement AODV+ on both wired and wireless nodes
Experiment Design • Car numbers – 9, 26, 32, 44,
55, 65 • AP numbers – 0, 4, 9(3x3), 16, 25, …, 100 • Random traffic – Using MOVE
Modification • AODV+ does not work – wired <--> wireless
– wireless -> wired -> wireless ? • Alternative – motionless cars act as APs
Performance • Success ratio • Pong RTT – Average –
Standard deviation
• In XGraph Success ratio
• In XGraph Average
• In XGraph Standard Deviation
Graph analysis Cars # 9 26 32 44 55 65
Best AP # 9 16 16 9 9 9 Start to drop 81 36 49 36 36 36 Best AP#/Car# 1.00 0.62 0.50 0.20 0.16 0.14 Success ratio 83.26 94.78 90.68 92.68 92.93 96.18 Best = highest success ra.o
Conclusion • Too much water drowned the miller – When
mobility and density is low, AP counts • Trade-off – High transmission rate – Extra routing table overhead
Q & A
Thank you