Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
VANET Simulation of AP assistance
Search
Andro Chen Chun-An
June 13, 2011
Research
0
46
VANET Simulation of AP assistance
2011-06-13 VANET Simulation of AP assistance
Final Project of 無線網路導論, 魏宏宇副教授 @ NTUEE
Andro Chen Chun-An
June 13, 2011
Tweet
Share
More Decks by Andro Chen Chun-An
See All by Andro Chen Chun-An
入坑滑雪自由行: 新手入門懶人包 - 雪場,費用,行程,行李,訓練 全攻略
androchentw
0
27
2021-02-17_splunk_cafe.pdf
androchentw
0
82
When Andro Meets Android - Android Taipei
androchentw
0
200
What I've Learned From Startups
androchentw
0
100
Baidu SEO II
androchentw
1
90
Basic HTML + SEO - A Simple Tutorial @5945
androchentw
0
55
Baidu SEO - A Practical Guide
androchentw
0
66
Privacy-Preserving Data Mining and Collusion Resistance
androchentw
0
53
啡˙聞
androchentw
1
61
Other Decks in Research
See All in Research
LiDARセキュリティ最前線(2025年)
kentaroy47
0
130
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
140
OWASP KansaiDAY 2025.09_文系OSINTハンズオン
owaspkansai
0
110
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.6k
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.9k
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
550
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
310
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
350
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
500
Featured
See All Featured
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
130
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
The Curse of the Amulet
leimatthew05
1
8.7k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
730
Speed Design
sergeychernyshev
33
1.5k
Transcript
VANET Simulation of AP Assistance AP協助下的車用無線網路模擬 B97901015 陳俊安 B97901087 林蓉瑄
B97901098 周伯威
Introduction • VANET module: MOVE – MObility model generator for
VEhicular networks • AODV+ – use AODV for simulations of wired-cum-wireless scenarios
Motive • Improve VANET performance – Using APs in the
city – Fast & reliable Ethernet • But “where are you?” – If we don’t use Mobile IP… • Implement AODV+ on both wired and wireless nodes
Experiment Design • Car numbers – 9, 26, 32, 44,
55, 65 • AP numbers – 0, 4, 9(3x3), 16, 25, …, 100 • Random traffic – Using MOVE
Modification • AODV+ does not work – wired <--> wireless
– wireless -> wired -> wireless ? • Alternative – motionless cars act as APs
Performance • Success ratio • Pong RTT – Average –
Standard deviation
• In XGraph Success ratio
• In XGraph Average
• In XGraph Standard Deviation
Graph analysis Cars # 9 26 32 44 55 65
Best AP # 9 16 16 9 9 9 Start to drop 81 36 49 36 36 36 Best AP#/Car# 1.00 0.62 0.50 0.20 0.16 0.14 Success ratio 83.26 94.78 90.68 92.68 92.93 96.18 Best = highest success ra.o
Conclusion • Too much water drowned the miller – When
mobility and density is low, AP counts • Trade-off – High transmission rate – Extra routing table overhead
Q & A
Thank you