Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
VANET Simulation of AP assistance
Search
Andro Chen Chun-An
June 13, 2011
Research
0
44
VANET Simulation of AP assistance
2011-06-13 VANET Simulation of AP assistance
Final Project of 無線網路導論, 魏宏宇副教授 @ NTUEE
Andro Chen Chun-An
June 13, 2011
Tweet
Share
More Decks by Andro Chen Chun-An
See All by Andro Chen Chun-An
入坑滑雪自由行: 新手入門懶人包 - 雪場,費用,行程,行李,訓練 全攻略
androchentw
0
12
2021-02-17_splunk_cafe.pdf
androchentw
0
78
When Andro Meets Android - Android Taipei
androchentw
0
190
What I've Learned From Startups
androchentw
0
97
Baidu SEO II
androchentw
1
86
Basic HTML + SEO - A Simple Tutorial @5945
androchentw
0
53
Baidu SEO - A Practical Guide
androchentw
0
57
Privacy-Preserving Data Mining and Collusion Resistance
androchentw
0
50
啡˙聞
androchentw
1
57
Other Decks in Research
See All in Research
音声感情認識技術の進展と展望
nagase
0
270
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
970
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
8.8k
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
330
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
190
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
280
Combinatorial Search with Generators
kei18
0
990
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
500
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
190
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
910
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
3
1.2k
単施設でできる臨床研究の考え方
shuntaros
0
3k
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
22k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
GraphQLとの向き合い方2022年版
quramy
49
14k
Producing Creativity
orderedlist
PRO
347
40k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Writing Fast Ruby
sferik
629
62k
Transcript
VANET Simulation of AP Assistance AP協助下的車用無線網路模擬 B97901015 陳俊安 B97901087 林蓉瑄
B97901098 周伯威
Introduction • VANET module: MOVE – MObility model generator for
VEhicular networks • AODV+ – use AODV for simulations of wired-cum-wireless scenarios
Motive • Improve VANET performance – Using APs in the
city – Fast & reliable Ethernet • But “where are you?” – If we don’t use Mobile IP… • Implement AODV+ on both wired and wireless nodes
Experiment Design • Car numbers – 9, 26, 32, 44,
55, 65 • AP numbers – 0, 4, 9(3x3), 16, 25, …, 100 • Random traffic – Using MOVE
Modification • AODV+ does not work – wired <--> wireless
– wireless -> wired -> wireless ? • Alternative – motionless cars act as APs
Performance • Success ratio • Pong RTT – Average –
Standard deviation
• In XGraph Success ratio
• In XGraph Average
• In XGraph Standard Deviation
Graph analysis Cars # 9 26 32 44 55 65
Best AP # 9 16 16 9 9 9 Start to drop 81 36 49 36 36 36 Best AP#/Car# 1.00 0.62 0.50 0.20 0.16 0.14 Success ratio 83.26 94.78 90.68 92.68 92.93 96.18 Best = highest success ra.o
Conclusion • Too much water drowned the miller – When
mobility and density is low, AP counts • Trade-off – High transmission rate – Extra routing table overhead
Q & A
Thank you