Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「自律型開発組織」を目指すCTOの、試行錯誤の記録
Search
ar_tama
December 15, 2022
Programming
3
26k
「自律型開発組織」を目指すCTOの、試行錯誤の記録
「明日の開発カンファレンス アスカンイブニング 2022」で発表した内容です。
https://fod.connpass.com/event/267578/
ar_tama
December 15, 2022
Tweet
Share
More Decks by ar_tama
See All by ar_tama
エンジニアリングマネージャー“お悩み相談”パネルセッション
ar_tama
1
760
「好き」から見つける仕事のかたち / Shape Your Career From What You Love
ar_tama
0
71
マネジメントって難しい、けどおもしろい / Management is tough, but fun! #em_findy
ar_tama
8
1.5k
本当に必要なのは「QAという技術」だった!試行錯誤から生まれた、品質とデリバリーの両取りアプローチ / Turns Out, "QA as a Discipline" Was the Key!
ar_tama
10
8.4k
自分の「心の声」に耳を傾けよう ――振り返りから始める、キャリアの可能性の広げ方 / Listen to Your Inner Voice: Unlocking Your Career Potential Through Reflection
ar_tama
2
810
偶然 × 行動で人生の可能性を広げよう / Serendipity × Action: Discover Your Possibilities
ar_tama
1
3.8k
チームを主語にしてみる / Making "Team" the Subject
ar_tama
5
680
小さな勉強会の始め方、広げ方、あるいは友達の作り方 / How to Start, Grow, and Build Connections with Small Study Groups
ar_tama
11
7k
Re: スタートアップ企業が実践する「身の丈スクラム」の現在地 / Re: Current State of 'Right-Sized Scrum' Practices in Startups
ar_tama
8
2.1k
Other Decks in Programming
See All in Programming
変化を楽しむエンジニアリング ~ いままでとこれから ~
murajun1978
0
510
AI Agent 時代のソフトウェア開発を支える AWS Cloud Development Kit (CDK)
konokenj
6
1k
LLMは麻雀を知らなすぎるから俺が教育してやる
po3rin
2
1.1k
新しいモバイルアプリ勉強会(仮)について
uetyo
1
180
No Install CMS戦略 〜 5年先を見据えたフロントエンド開発を考える / no_install_cms
rdlabo
0
370
slogパッケージの深掘り
integral0515
0
150
それ CLI フレームワークがなくてもできるよ / Building CLI Tools Without Frameworks
orgachem
PRO
11
2.7k
階層化自動テストで開発に機動力を
ickx
1
430
バイブコーディング超えてバイブデプロイ〜CloudflareMCPで実現する、未来のアプリケーションデリバリー〜
azukiazusa1
2
730
AWS Summit Japan 2024と2025の比較/はじめてのKiro、今あなたは岐路に立つ
satoshi256kbyte
1
250
CIを整備してメンテナンスを生成AIに任せる
hazumirr
0
280
Claude Code で Astro blog を Pages から Workers へ移行してみた
codehex
0
160
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
184
22k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Embracing the Ebb and Flow
colly
86
4.8k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Designing for humans not robots
tammielis
253
25k
Navigating Team Friction
lara
187
15k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Agile that works and the tools we love
rasmusluckow
329
21k
BBQ
matthewcrist
89
9.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
Transcript
ʮࣗܕ։ൃ৫ʯΛࢦ͢$50ͷ ࢼߦࡨޡͷه $BLFKQ$P-UE !ΞεΧϯΠϒχϯά
ΞδΣϯμ - ຊ࠷େڃͷέʔΩɾεΠʔπઐ&$αΠτʮ$BLFKQʯͷ͝հ - ࣗݾհ - ʮࣗܕ։ൃ৫ʯΛࢦ͢աఔͰͷࢼߦࡨޡ - ᶃ ٕज़બఆ
- ᶄ ৫ɾίϛϡχέʔγϣϯઃܭ
ձһສਓಥഁʂ ຊ࠷େڃͷέʔΩɾεΠʔπઐ&$αΠτ
ձһສਓɺҎ্ͷళฮ͕Ճໍ͠ɺछྨҎ্ͷΛऔΓଗ͍͑ͯΔ $BLFKQ ຊ࠷େڃͷέʔΩɾεΠʔπઐ&$αΠτ
৫ͷ͜ͱ ։ൃຊ෦ - ΤϯδχΞ໊ʢʴۀҕୗ໊ʣ - σβΠφʔ໊ - εςʔΫϗϧμʔ - ࣾ֎ɿγϣοϓɺΤϯυϢʔβʔ
- ࣾɿϚʔέຊ෦ʢؚ$4ʣɺӦۀຊ෦ɺཧຊ෦ - ࣾһ໊
৫ͷ͜ͱ ਓͷมભ - ظతʹۀҕୗͷํʹདྷͯΒͬͨΓʢdՆʣ - ৽͍ࣾ͠һΛ͓ܴ͑ͨ͠ΓʢdͰ໊ʣ
৽ଟਅۏʗ͋Βͨ·ʗ!BS@UBNB - גࣜձࣾσΟʔɾΤψɾΤʔ - גࣜձࣾηΦࣄ - גࣜձࣾϩίΨΠυ - גࣜձࣾ$BLFKQʢdʣ -
ࣥߦһ$50 🧖 αφཱྀ͕झຯ 🍡 ຊͪͪڠձ ද ࣗݾհ
- લ৬ͷϩίΨΠυ·ͰϝϯόʔϨΠϠͷΈ - ϝϯόʔͱͯ͠ʮ͏·͘Ϛωʔδ͞ΕΔํ๏ʯΛࡧ͢ΔաఔͰ ͍Ζ͍ΖͱຊΛಡΈړΔΑ͏ʹ - ϝϯόʔϨΠϠͰͰ͖Δ͜ͱ - ϚωδϝϯτϨΠϠʹظ͖͢͜ͱ -
$BLFKQͰϐʔϓϧϚωδϝϯτʹॳઓ - ݱࡏͷϩʔϧ - &. - σβΠϯϚωʔδϟʔ - ςοΫϦʔυ - 1E.ʢ/FXʣ ࣗݾհ
ࣗݾհ
ΠϚίί - ຊ࠷େڃͷέʔΩɾεΠʔπઐ&$αΠτʮ$BLFKQʯͷ͝հ - ࣗݾհ - ʮࣗܕ։ൃ৫ʯΛࢦ͢աఔͰͷࢼߦࡨޡ - ᶃ ٕज़બఆ
- ᶄ ৫ɾίϛϡχέʔγϣϯઃܭ
ࢼߦࡨޡᶃ ٕज़બఆ ˞ೖࣾॳͷ͋Βͨ·͞Μ
ࢼߦࡨޡᶃ ٕज़બఆ ͜Ε·Ͱͷมભ - ճͷϐϘοτ - ֻ͚΄Ͳͷίʔυϕʔε - ఆண͠ͳ͍ϝϯςφ -
ͲΜͲΜੜ·ΕΔؔ࿈ࣄۀˍػೳ - ·͙Δ͘͠มΘΔۀϑϩʔ ͦͯ͠ཾʜ
ʹٕज़తࢿ͕͞Εͯ͜ͳ͔ͬͨʁ /P݁Ռͱͯ͠ɺٕज़తࢿҎ֎ͷஅ͕༏ઌ͞Ε͖͚ͯͨͩ ࢼߦࡨޡᶃ ٕज़બఆ
ٕज़తࢿʹʢʣྗΛೖΕΑ͏ ˠཾΛղ͖΄͙ͯ͠ɺ৽͍͠ΞϓϦέʔγϣϯʹࡌͤସ͑Α͏ - ࣄۀͷϘτϧωοΫΛͳͨ͘͢Ί - γεςϜͷण໋ΛԆͨ͢Ί - ։ൃऀੜ࢈ੑͱָ͠͞Λ૿෯ͤ͞ΔͨΊ ࢼߦࡨޡᶃ
ٕज़બఆ
ઌਓͷܙΛੵۃతʹआΓΔ ࢼߦࡨޡᶃ ٕज़બఆ
- 1)1ˠαʔόʔαΠυ,PUMJO - &$αΠτͱͯ͠ͷجຊػೳݻ͘ - ཧܗ͕Θ͔Βͳ͍ͱ͜Ζॊೈʹ࡞Δ ࢼߦࡨޡᶃ ٕज़બఆ
ࢼߦࡨޡᶃ ٕज़બఆ - ΧΦεϞϊϦεˠϞδϡϥϞϊϦε - ʮͲ͔͜ΒͰͳΜͰݺͼग़ͤΔʯΛػߏͱ͙ͯ͠ - WJFXʹ42-Λʮॻ͔ͳ͍ʯͰͳ͘ʮॻ͚ͳ͍ʯ࡞Γ -
ڥքΛਖ਼͘͠࡞Δ͜ͱ - ʹݱ࣮ͷࣸ૾ͨΔυϝΠϯϞσϧΛΈཱͯΔ͜ͱ - ͦͷͨΊʹۀքΛΓɺࣄۀΛΓɺۀϑϩʔΛΔ - ਂ͘ΔͨΊʹɺεςʔΫϗϧμʔͱରΛॏͶΔ - ࣌ʹݱʹඈͼࠐΉ
- ݱࡏ - ෳػೳ͕αʔόαΠυ"1*ͱͯ͠Γग़͞Ε͍ͯΔ - ϝϯόʔͷա͕ίϯτϦϏϡʔτ͍ͯ͠Δ - ͍͍ͱ͜Ζ - ͕໌֬ʹͳΓɺςελϒϧʹ
- ΈΜͳͦΕͳΓʹָͦ͠͏ - ՝ - د͖ͤΕͳ͍ - ߟྀ࿙ΕɺଥڠʢఘΊͳ͍͕࢟େࣄʣ - σʔλߏʹҾ͖ͣΒΕͯෳࡶੑ͕૿͢ύλʔϯ - ࡞Δͷ͕ͨͩͷ$36%͚ͩͳΒ·ͩدͤΔ͖Ͱͳ͍ ࢼߦࡨޡᶃ ٕज़બఆ
ΠϚίί - ຊ࠷େڃͷέʔΩɾεΠʔπઐ&$αΠτʮ$BLFKQʯͷ͝հ - ࣗݾհ - ʮࣗܕ։ൃ৫ʯΛࢦ͢աఔͰͷࢼߦࡨޡ - ᶃ ٕज़બఆ
- ᶄ ৫ɾίϛϡχέʔγϣϯઃܭ
dࣗΛϋϒʹਾ͑ͨύεߏʴνʔϜମ੍ ˣ dνʔϜΊͯΈͨ ˣ dઐνʔϜ ݉νʔϜମ੍ʢΠϚίίʣ ࢼߦࡨޡᶄ ৫ઃܭ d
d d
ࣗΛϋϒʹਾ͑ͨύεߏʴνʔϜମ੍ - ʮ։ൃνʔϜʯ͕΄΅ଘࡏ͠ͳ͍ঢ়ଶ͔Βʮ։ൃຊ෦ʯΛ - ͜Ε·Ͱ։ൃϚʔέςΟϯά෦ͷҰػೳͱ͍͏ཱ͚ͯ - ϚʔέҎ֎ͷࢪࡦʹຆͲॆͯΒΕΔϦιʔε͕ͳ͍ঢ়ଶ ࢼߦࡨޡᶄ ৫ઃܭ d
d
։ൃຊ෦ɺ$BLFKQʹ໋Λਧ͖ࠐΉूஂͰ͢ɻ զʑͷׂɺؒͷϛογϣϯʹدΓఴ͍ɺ$BLFKQʹͱͬͯ࠷ળɾ࠷ྑ ͷ݁Ռ͕ಘΒΕΔܗʹམͱ͠ࠐΈɺ۩ݱԽ͢Δ͜ͱɻ $BLFKQͷإΛ࡞Δͷɺ࠷ޙͷࡆͱͳΔͷɺϓϩμΫτͰ͢ɻ ʮεΠʔπΞϕϯδϟʔζʯͷҰһͱͯ͠ɺ߈कͱʹ༏ΕͨϓϩϑΣογ ϣφϧूஂͱͳΔ͜ͱΛࢦ͠·͠ΐ͏ɻ ։ൃຊ෦্ཱͪ͛࣌ͷࢿྉΑΓൈਮ
ͭͷʮϓϩʯ $BLFKQͷϓϩ ۀϑϩʔ͔Βৄࡉ༷·Ͱ $BLFKQͷ͜ͱͳΒԿͰͬͯ·͢😤 γεςϜʗσβΠϯͷϓϩ ϢʔβʔϑΝʔετ࠷ޙͷࡆ ࠷্ͷମݧΛಧ͚Δ͜ͱʹΛෛ͍·͢🧑🍳 ݴΘΕͨ͜ͱ͚ͩΔ͓࣌͠·͍😉 ղܾͷϓϩ ϓϩͨΔͷɺࣄނى͖Δલʹ͙ͷ
ઌճΓͯ͠ղܾ͠·͢😎 ಓͷੴͲΜͲΜरͬͪΌ͏🍓 ༁ͷϓϩ ͯ͢ͷࣄϓϩμΫτ͋Γ͖ͰਐΈ·͢ ૬खͷཱ͔ΒΘ͔Γ͘͢આ໌͠·͢💁 ։ൃຊ෦্ཱͪ͛࣌ͷࢿྉΑΓൈਮ
ࣗΛϋϒʹਾ͑ͨύεߏʴνʔϜମ੍ ιϑτɿ - ·ͣνʔϜͷؼଐҙࣝΛ࡞Δ͜ͱ͔Β - ࣄؒʹΑΓތΓΛ࣋ͯΔ - ࣗͨͪԿऀͰ͋Δ͔ΛޠΕΔ - ͔ࣗΒͷൃ৴ྔΛ૿͠ɺҙݟݸผʹऩू
- UPCFΛͱʹ͔͍͘ΖΜͳॴͰޠΔɺޠͬͯΒ͏ - POɺఆྫɺৼΓฦΓɺͦͷଞ - पΓͷྑ͍ߦಈΛरͬͯϒϩʔυΩϟετ͢Δ ࢼߦࡨޡᶄ ৫ઃܭ d d
ࣗΛϋϒʹਾ͑ͨύεߏʴνʔϜମ੍ ϋʔυɿ - ͖߹͍ઌͷ෦ॺΛنఆ͠ɺΞαΠϯ - Ϛʔέຊ෦ɺӦۀຊ෦ͷ෦ॺʹେ͖͘ϦιʔεΛׂ - ඪʮ͖߹͍ઌͷ෦ॺඪΛΤϯδχΞϦϯάͰୡͤ͞Δʯ - ૬खͷXIZ
XIBUΛཧղ͠ɺIPXʹΛ࣋ͭจԽ ࢼߦࡨޡᶄ ৫ઃܭ d d
ࣗΛϋϒʹਾ͑ͨύεߏʴνʔϜମ੍ ϋʔυɿ - ʮ։ൃຊ෦ԿΛେࣄʹ͖͔͢ʯΛɺٞ͠ͳ͕Βنఆ - POͰඪͷઃఆɾୡΛαϙʔτ - ྠಡձͰΠϯϓοτɾΞτϓοταΠΫϧΛཱ֬ - ϐΞϨϏϡʔͷಋೖɺϨϏϡʔΨΠυϥΠϯࡦఆ
- िؒεϓϦϯτͷಋೖʴৼΓฦΓαΠΫϧઃఆ - ࠾༻໘ɾ໘ஊʹੵۃతʹϝϯόʔΛר͖ࠐΉ ࢼߦࡨޡᶄ ৫ઃܭ d d
ࣗΛϋϒʹਾ͑ͨύεߏʴνʔϜମ੍ Ռɿ - ͨͩͷʮࣾडୗʯʹΜ͡ͳ͍จԽͷछ͕Ͱ͖ͨ - ݸਓϓϨΠͰͳ͘νʔϜͰࣄΛճ͢ݪܕ͕Ͱ͖ͨ - 1+্ཱͪ͛ͷࡍʹ1K.ϩʔϧΛ୲ͬͯ͘ΕΔϝϯόʔ - ݸਓͷৼΓฦΓαΠΫϧ͕Ͱ͖ɺΛΑΓ࣮ײͯ͠Β͑ΔΑ͏ʹ
- ྠಡձϐΞϨϏϡʔΛ௨ͯ͡ɺڞ௨ͷՁ؍͕ҭ·Εͨ - ਓ͕ˠਓʹ૿͑ͯεέʔϧͨ͠ ࢼߦࡨޡᶄ ৫ઃܭ d d
ࣗΛϋϒʹਾ͑ͨύεߏʴνʔϜମ੍ ՝ɿ - ݻఆϦιʔεΛׂΓ͍ͯͯͳ͍෦ॺ༝དྷͷࣄΛਐΊΒΕͳ͍ - ΨόφϯεڧԽͷͨΊͷػೳվળͱ͔ - ։ൃऀੜ࢈ੑͷ্ͱ͔ʢࣗ෦ॺͷॏλεΫ͢Βʣ - ͖߹͍ઌ෦ॺʹλεΫ༏ઌ͕ґଘ
- ༏ઌͷ͔֬Β͠͞ΛϨϏϡʔ͢Δׂ͕ෆࡏ - ʮ෦ॺʯ͖߹͍ͷݶք - ՁΛຊʹಧ͚Δ͖૬खͦͷઌʹ͍Δͣ - ෬ઢ - ৼΓฦΓαΠΫϧ͕νʔϜͰͳ͘ݸਓʹด͍ͯ͡Δ - ϓϩμΫτͷUPCFΛنఆ͢Δׂ͕ෆࡏ ࢼߦࡨޡᶄ ৫ઃܭ d d
νʔϜΊͯΈͨ - 1E.ͱཱ͕ͯࣗͪ͠ɺλεΫͷ༏ઌΛίϯτϩʔϧ - ॏςʔϚ͝ͱͷେ·͔ͳϦιʔεΛ݄ॳʹܾΊɺλεΫΛ - ֤෦ॺ͔Βͷґཔఆྫɾ4MBDLͰٵ্͍͛ɺεϓϦϯτʹө - 1+ϑΣʔζ͝ͱʹඞཁͳσβΠφʔɾΤϯδχΞϦιʔεʹΒ͖ͭ ͕ग़ΔͨΊɺݻఆͷνʔϜ͕Ͱ͖ͳ͔ͬͨ
ࢼߦࡨޡᶄ ৫ઃܭ d d
νʔϜΊͯΈͨ Ռɿ - ͜Ε·Ͱ༏ઌͷ্͛ʹ͔ͬͨ͘ࢪࡦ͕େ͖͘ಈ͔ͤͨ - ϓϩμΫτͷUPCF͔Βٯࢉͨ͠ࢪࡦ - $3. - Ұ؏ͨ͠ػೳମݧͷఏڙ
- ։ൃऀੜ࢈ੑ্ܥͷࢪࡦ - ΨόφϯεڧԽͷͨΊͷࢪࡦ - ͳͲͳͲ ࢼߦࡨޡᶄ ৫ઃܭ d d
νʔϜΊͯΈͨ ՝ɿ - νʔϜશһͷ۩ମνέοτΞαΠϯ͕େม - ਐߦঢ়گʹ߹Θͤͨ৽نࢪࡦͷࠐΊ - ϝϯόʔͷετϨονΛՃຯͨ͠ΞαΠϯ Y -
ͦͷׂʹϝϯόʔͷίϛοτϝϯτΛҾ͖ग़͍ͤͯͳ͍ײ - ϝϯόʔͷλεΫਐߦঢ়گ͕ޓ͍ʹΘ͔Γʹ͍͘ঢ়ଶ - ΤϯδχΞ㱻σβΠφʔʮ୭ʹ૬ஊ͢Ε͍͍ʁʯ - ίʔυϨϏϡʔ࣌ͷೝෛՙ૿Ճ - ৼΓฦΓαΠΫϧ͕νʔϜͰͳ͘ݸਓʹด͍ͯ͡Δ - νʔϜͷงғؾࣗମΑ͍ͷ͕ٹ͍ʢ͋Γ͕͍ͨʂʣ ࢼߦࡨޡᶄ ৫ઃܭ d d
νʔϜΊͯΈͨ - ͜ΕΒͷ՝ɺνʔϜ੍ʹͤ͋Δఔղܾ͢Δ͜ͱ͔͍ͬͯͨ - ͕ɺͲͷΓޱͰͷνʔϜ͚͕ద͔ʹ͕͑ग़ͳ͍ঢ়ଶ͕ଓ͍͍ͯͨ ࢼߦࡨޡᶄ ৫ઃܭ d d
ઐνʔϜ ݉νʔϜମ੍ ᶃ ετϦʔϜΞϥΠϯυ෩ - ͖߹͍ઌΛ෦ॺͰͳ͘ɺʮϢʔβʔʯʮγϣοϓɾࣾʯʹ͚ͨ - ͡ΊʹՁΛಧ͚Δઌ - ͔ͭʮϋοϐʔτϥΠΞϯάϧʯΛճ͢ى
- ͖߹͍ઌ͋͘·ͰىͰ͋Γɺ࣮ݱ͍ͨ͠ͷࡾํΑ͠ - ࣗͨͪΛؚΉ - ͜Ε·ͰͷบͰʮӦۀνʔϜʯͱݴΘͳ͍Α͏ʹ ཱ͚ͯΛஸೡʹγΣΞ ࢼߦࡨޡᶄ ৫ઃܭ d d
ઐνʔϜ ݉νʔϜମ੍ ᶄ ΠωΠϒϦϯά෩ - ͖߹͍ઌʢىʣΛ$BLFKQγεςϜɾ։ൃຊ෦ϝϯόʔͱنఆ - ੜ࢈ੑ্ٕज़ݕূͳͲΛ୲ - શһΛ݉ͱ͍ͯ͠Δ
- ސ٬ʹՁΛಧ͚Δ͜ͱͱଓ͍ͤͨ͞ҙਤ - Ϧιʔεͷ߹ ࢼߦࡨޡᶄ ৫ઃܭ d d
ઐνʔϜ ݉νʔϜମ੍ - త - ϝϯόʔͷೝෛՙ͕Լ͕Δ͜ͱ - ΑΓࣗൃతͳίϛοτϝϯτ͕ग़͞ΕΔ͜ͱ - ݸਓ͚ͩͰͳ͘νʔϜͰͷܦݧֶशαΠΫϧ͕ճΔ͜ͱ
ࢼߦࡨޡᶄ ৫ઃܭ d d
ઐνʔϜ ݉νʔϜମ੍ - νʔϜͷύϑΥʔϚϯεΛߴ͘อͭʹɺओମੑͱࣗੑͷ্͕ෆՄܽ - ओମੑͱࣗੑΛҭΉΈΛੵۃతʹऔΓೖΕͨ - ·ͣ͡ΊʹνʔϜ໊ΛࣗͨͪͰܾΊͨ - ৼΓฦΓɾϓϥϯχϯάΛνʔϜ୯ҐͰߦ͏Α͏ʹͨ͠
- ͋Δఔͷ߆ଋ࣌ؒ૿ՃͱτϨʔυΦϑ ࢼߦࡨޡᶄ ৫ઃܭ d d
ઐνʔϜ ݉νʔϜମ੍ - ʮࣗܕ։ൃ৫ʯʹͳΔͨΊͷҰา౿Έग़ͤͨײ৮ - ·ͩ·ͩܗظʢCZλοΫϚϯϞσϧʣ - ேձͷ༷ࢠͪΐͬͱ͗ͪ͜ͳ͍ - ࢼߦࡨޡଓ͘ʜ
- ߋʹνʔϜϏϧυͷͨΊͷϫʔΫΛߦ͍͖͍ͬͯͨ - ࣗݾ։ࣔͱ૬ޓཧղΛଅ͢औΓΈ - νʔϜͱͯ͠ͷڞ௨ඪΛཱͯͨΓ - ޓ͍ͷׂΛنఆɾγΣΞͨ͠Γ - νʔϜͰͷৼΓฦΓͷ࣭Λ্͛ΔऔΓΈ - εςʔΫϗϧμʔͱͷରͷػձΛ૿͢औΓΈ ࢼߦࡨޡᶄ ৫ઃܭ d d
🍵 ͪΐͬͱٳܜ
͓ΘΓʹ - લٕज़ͷɺޙ৫ͷ - ͲͪΒѻ͏՝ͷෳࡶ͕ʢϝϯόʔϨΠϠͷࠒʹൺͯʣߴ͍ - ࣌ؒ࣠ͷίϯτϩʔϧ͍͠ - Θ͔Γ͍͢ਖ਼ղͳ͍ -
ࢹใྔͷࠩΛཧղ͠ͳ͍ͱ༰қʹࣄނ͕ى͖Δ - ࣄΛ͏·͘ਐΊΔͨΊͷճΓಓͷΑ͏ͳۙಓɺର - ૬खʹڵຯΛ࣋ͪɺࣗͱपΓʹڵຯΛ࣋ͬͯΒ͏Λ͢Δ - ਪͷ͠͝Λ্Βͳ͍ɺ্Βͤͳ͍ - ରΛ͠ଓ͚ΒΕΔνʔϜ͕ͦ͜ɺ͍͍ϓϩμΫτΛ࡞ΕΔ - ࢼߦࡨޡͷಓ·ͩ·ͩଓ͘ʜ
͓ΘΓʹ - ΓࠐΊͳ͔ͬͨࢼߦࡨޡͨ͘͞Μ - ࠾༻ - ධՁ੍ʢඪཧɾάϨʔυʣઃܭʙӡ༻ - ඪઃఆͷαϙʔτͱ'#αΠΫϧ -
օ͞Μͷࢼߦࡨޡͥͻڭ͍͑ͯͩ͘͞ʂ - ͍͞͝ʹએ
͓ΘΓʹ IUUQTDBLFKQ