Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G検定#2
Search
asagiman
August 25, 2019
Technology
0
97
G検定#2
asagiman
August 25, 2019
Tweet
Share
More Decks by asagiman
See All by asagiman
G検定講座#1
asagiman
0
71
敷居の低いAI勉強会#3
asagiman
0
52
敷居の低いAI勉強会#4
asagiman
0
58
BIRD
asagiman
0
58
開発合宿#1_アジェンダ
asagiman
0
180
画像解析(MNIST)
asagiman
0
87
「さんすう」
asagiman
0
82
みやこもくもく会#8資料「機械学習実践セミナー」
asagiman
0
180
AI & Disconnecting the Dots
asagiman
0
45
Other Decks in Technology
See All in Technology
やる気のない自分との向き合い方/How to Deal with Your Unmotivated Self
sanogemaru
0
450
ACA でMAGI システムを社内で展開しようとした話
mappie_kochi
1
310
Reflections of AI: A Trilogy in Four Parts (GOTO; Copenhagen 2025)
ondfisk
0
110
extension 現場で使えるXcodeショートカット一覧
ktombow
0
220
AI駆動開発を推進するためにサービス開発チームで 取り組んでいること
noayaoshiro
0
240
[Keynote] What do you need to know about DevEx in 2025
salaboy
0
150
20201008_ファインディ_品質意識を育てる役目は人かAIか___2_.pdf
findy_eventslides
2
590
M5製品で作るポン置きセルラー対応カメラ
sayacom
0
170
PLaMoの事後学習を支える技術 / PFN LLMセミナー
pfn
PRO
9
4k
10年の共創が示す、これからの開発者と企業の関係 ~ Crossroad
soracom
PRO
1
690
ガバメントクラウド(AWS)へのデータ移行戦略の立て方【虎の巻】 / 20251011 Mitsutosi Matsuo
shift_evolve
PRO
2
180
The Cake Is a Lie... And So Is Your Login’s Accessibility
leichteckig
0
110
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
900
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Rails Girls Zürich Keynote
gr2m
95
14k
Designing Experiences People Love
moore
142
24k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Code Review Best Practice
trishagee
72
19k
Practical Orchestrator
shlominoach
190
11k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.9k
Transcript
ෑډͷ͍"*ษڧձɹ "*δΣωϥϦετݕఆʢ݄ʣ߹֨ߨ࠲
(ݕఆ߹֨ߨ࠲ɹୈճΞδΣϯμ w ߨࢣࣗݾհˍຊߨ࠲ͷతઆ໌ʢʣ w ࢀՃऀࣗݾհʢʣ w (ݕఆͷ֓ཁઆ໌ʢʣ w ࠓճͷֶशൣғΛհ w
ʲ4UVEZ"*ʳ͔ΒࠓճͷֶशൣғͷྫΛϐοΫΞοϓʢʣ w ࠓճͷֶशൣғͰಛʹཧղ͓͖͍ͯͨ͜͠ͱɹʢʣ w ػցֶशͱԿͳͷ͔ɻ࣮ࡍͷϓϩάϥϛϯάΛݟͯΈΑ͏ʢʣ w ࣭ٙԠɹΞϯέʔτʢʣ
ࣗݾհˍຊߨ࠲ͷతઆ໌
ࣗݾհ ҵݝੜ·ΕҵݝҭͪૣҴాେֶʢจԽߏֶ෦ʣ ܯࢹிܯژͷ༗໊٤ళ ϑϦʔϥΠλʔ*5اۀͷਓࣄ୲ ൧ా༑ ϓϩάϥϛϯάྺϲ݄ ͦͷ ճͷ࠳ંܦݧΞϦ
ຊߨ࠲ͷత AIΛֶͼ͍ͨਓΛԠԉ͍ͨ͠ʂ ژͷAIൃలʹߩݙ͍ͨ͠ʂ AIനॻΛಡΈࡅ͘ମྗΛʹ͚ͭͯཉ͍͠ʂ ۀքʹ”Bump of Chicken” ΛՃ͑Δʂʂ
ࢀՃऀࣗݾհ 1. ࢯ໊ 2. झຯ 3. GݕఆΛडݧ͢Δ͔Ͳ͏͔ 4. AIͱͷؔΘΓʹ͍ͭͯ
"*ਓࡐʹ͍ͭͯɺϦΞϧͳখ ʮ"*ΤϯδχΞʹݶΒͣͰ͕͢ɺ ࠓɺݱʹΓͳ͍ͷθωϥϦετͱͯ͠׆༂Ͱ͖Δਓ ͩͱ͍͏͜ͱ͕Α͘ݴΘΕ͍ͯ·͢ɻΞϧΰϦζϜɺΤϯδχΞϦϯάɺϏδ ωεɺͦͷͯ͢ͷͰೳྗΛൃشͰ͖Δਓ͕ٻΊΒΕ͍ͯΔΑ͏Ͱ ͢ɻʯ
CZגࣜձࣾϝϧΧϦɹ"*ΤϯδχΞɹদԬྰԻ͞Μ IUUQTUZQFKQFUGFBUVSF
Gݕఆͷ֓ཁઆ໌
(ݕఆͷ֓ཁઆ໌ఆٛ (ݕఆͱʁ ɹ"*δΣωϥϦετΛഉग़͢ΔͨΊͷݕఆͷ͜ͱ ɹ"*δΣωϥϦετͱʁ ɹʰσΟʔϓϥʔχϯάͷجૅࣝΛ༗͠ɺదͳ׆༻ํΛܾఆ͠ ͯࣄۀԠ༻͢ΔೳྗΛ࣋ͭਓࡐʱʢ+%-"ެࣜ)1ʣ
(ݕఆͷ֓ཁઆ໌ࢼݧ֓ཁ ެࣜHPΛࢀর͠·͠ΐ͏ʂ JDLAެࣜHP
(ݕఆͷ֓ཁઆ໌࣮ࡍͲΜͳࢼݧͳͷʁ ࣌ؒΊͬͪΌݫ͍͠ ͷΛͰղ͢Δʹʹ͔͚ΒΕΔฏۉ࣌ؒඵ ҉هଈͰ͖ΔϨϕϧʹ͠Α͏ʂ ˑ5*14 ɹͯ͢ͷʹνΣοΫϘοΫε͕ଘࡏ͠·͢ɻ ɹগ͠ͰΜͩνΣοΫͯ͠ޙճ͠ʹͯ͠͠·͓͏ʂ
(ݕఆͷ֓ཁઆ໌࣮ࡍͲΜͳࢼݧͳͷʁ ݫ͠Ί ؙ҉هͰͯ͢ʹ͑ΒΕͳ͍ɻ ಛʹσΟʔϓϥʔχϯάʹؔͯ͠ཧղΛਂΊ͍ͨͱ͜Ζɻ ˑTIPS ɹେ·͔ͳߏͪ͜Βɻ ɹ1:ਓೳͷجૅࣝʢୈ1ষʙୈ3ষʣɹɹ2ׂ ɹ2:σΟʔϓϥʔχϯάʢୈ4ষʙୈ7ষʣɹɹ6ׂ ɹ3:࢈ۀͷԠ༻ɾ࣌ࣄʢୈ8ষʙୈ9ষʣ2ׂ
ࠓճͷֶशൣғ
ࠓճͷֶशൣғ ୈ4ষɿػցֶशͷ۩ମతख๏ ʢࢀরɿAIനॻɾGݕఆެࣜςΩετʣ
ʲStudy-AIʳ͔ΒࠓճͷֶशൣғͷྫΛ ϐοΫΞοϓ
4UVEZ"*ͱʁ גࣜձࣾφτϑ͕ӡӦ͢ΔɺਓೳΛֶͿ͜ͱͷͰ͖ΔαΠτ Study-AI
ٖࢼݧΛݟͯΈΑ͏ Study-AI
ٖࢼݧΛݟͯΈΑ͏ Study-AI
ࠓճͷֶशൣғͰಛʹཧղ͓͖͍ͯͨ͜͠ͱ
Ұཡ ୈষΑΓ ػցֶशͷछྨΛཧղ͠Α͏ ϞσϧͷݕূɾධՁํ๏ΛΖ͏ ࣮ࡍʹಈ͘ػցֶशΛݟͯΈΑ͏
ୈষΑΓ ػցֶशͷछྨΛཧղ͠Α͏ ϞσϧͷݕূɾධՁํ๏ΛΖ͏ ࣮ࡍʹಈ͘ػցֶशΛݟͯΈΑ͏
ػցֶशͷछྨ 1. ڭࢣ͋Γֶश 2. ڭࢣͳֶ͠श 3. ڧԽֶश ʢ࣍ճհʣ
AISIA
ڭࢣz͋Γzֶश ֓ཁɿֶशσʔλʹਖ਼ղϥϕϧΛ͚ͭΔʢೖྗͱग़ྗʣ ɹɹɹͦͷσʔλʢઆ໌มʹಛྔʣͱਖ਼ղʢతมʣͱͷؔੑΛ ɹɹɹɹֶश͢Δ ༻ྫɿ͜Ε·ͰूΊͨσʔλ͔ΒύλʔϯΛೝࣝ͠ɺྸ༧ଌ͢Δ ɹɹɹɹʢΞϫϏͷྸ༧ଌɿճؼʣ ɹɹɹɹݘɺೣɺτϥͷը૾Λֶश͠ɺྨ͢ΔϞσϧ ɹɹɹɹʢλΠλχοΫ߸ɿྨʣ ɹɹɹɹˑޙ΄Ͳɺ࣮ࡍʹϓϩάϥϜΛಈ͔͠·͢
ڭࢣ͋ΓֶशʢදతΞϧΰϦζϜʣ w ઢܗճؼɹɹɹɹɹɹɹɹʹɹճؼͷख๏ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹΞϫϏͷྸ༧ଌͰհ w ϩδεςΟοΫճؼɹɹɹʹɹྨͷख๏ w ϥϯμϜϑΥϨετɹɹɹʹɹྨͷख๏ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹλΠλχοΫ߸ੜଘऀ༧ଌͰհ w
ϒʔεςΟϯάɹɹɹɹɹʹɹྨͷख๏ w αϙʔτϕΫλʔϚγϯɹʹɹྨɾճؼͲͪΒ0, w χϡʔϥϧωοτϫʔΫɹʹɹྨɾճؼͲͪΒ0,
ڭࢣ͋ΓֶशʢϩδεςΟοΫճؼʣ http://nonbiri-tereka.hatenablog.com/entry/2014/06/30/134023 γάϞΠυؔ
ڭࢣ͋ΓֶशʢϥϯμϜϑΥϨετʣ ౷ܭϥϘ γάϞΠυؔ
ڭࢣ͋ΓֶशʢϒʔεςΟϯάʣ Géron, Aurélien. "Hands on Machine Learning with scikit-learn and
Tensorflow." (2017).
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋ΓֶशʢχϡʔϥϧωοτϫʔΫʣ https://www.atmarkit.co.jp/ait/articles/1811/20/news012.html ଟύʔηϓτϩϯ
ڭࢣzͳ͠zֶश ֓ཁɿֶशσʔλʹϥϕϧΛ͚ͳ͍Ͱֶश͢ΔʢೖྗͷΈʣ ɹɹɹͦͷσʔλͷ࣋ͭߏɺಛΛࣝผ͢Δ ɹɹɹɹྨࣅσʔλͷάϧʔϐϯάσʔλΛಛ͚ͮΔใΛநग़͢Δ ༻ྫɿ&$αΠτͷߪങσʔλ͔Βɺސ٬ΛΫϥελϦϯά͢Δ ɹɹɹɹσʔλΛಛ͚ΔใΛநग़͢Δʢ࣍ݩݮʣ
ڭࢣzͳ͠zֶश ΫϥελϦϯά
ڭࢣzͳ͠zֶशʢදతΞϧΰϦζϜʣ w LNFBOTɹɹɹɹɹɹ w ओੳɹɹɹɹɹɹɹ
ڭࢣzͳ͠zֶशʢLNFBOTʣ Math Works
ڭࢣzͳ͠zֶशʢLNFBOTʣ Math Works
ڭࢣzͳ͠zֶशʢओੳʣ Tech Clips
Founder
ୈষΑΓ ػցֶशͷछྨΛཧղ͠Α͏ ϞσϧͷݕূɾධՁํ๏ΛΖ͏ ࣮ࡍʹಈ͘ػցֶशΛݟͯΈΑ͏
σʔλͷѻ͍ ະͷσʔλʹର͢Δ༧ଌೳྗ͕େ ༻ҙͰ͖ΔσʔλΛׂ͠ɺධՁʢʹަࠩݕূʣ ɹɹɾ܇࿅༻ (train_set) ɹɹɾධՁ༻ (test_set)
ਖ਼ଇԽ աֶशΛ͍Ͱ൚ԽੑೳΛߴΊΔͨΊͷςΫχοΫ AIZINE
ୈষΑΓ ػցֶशͷछྨΛཧղ͠Α͏ ϞσϧͷݕূɾධՁํ๏ΛΖ͏ ࣮ࡍʹಈ͘ػցֶशΛݟͯΈΑ͏
֓ཁ 1. ͔Δ͜ͱ ػցֶशͷҰ࿈ͷྲྀΕɾલॲཧͷํ ಛྔબఆͷํ 2. Ռ ༧ଌੳ݁Ռ
fin ୯ޠா