Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G検定#2
Search
asagiman
August 25, 2019
Technology
0
96
G検定#2
asagiman
August 25, 2019
Tweet
Share
More Decks by asagiman
See All by asagiman
G検定講座#1
asagiman
0
65
敷居の低いAI勉強会#3
asagiman
0
50
敷居の低いAI勉強会#4
asagiman
0
54
BIRD
asagiman
0
55
開発合宿#1_アジェンダ
asagiman
0
170
画像解析(MNIST)
asagiman
0
84
「さんすう」
asagiman
0
81
みやこもくもく会#8資料「機械学習実践セミナー」
asagiman
0
170
AI & Disconnecting the Dots
asagiman
0
44
Other Decks in Technology
See All in Technology
JPOUG Tech Talk #12 UNDO Tablespace Reintroduction
nori_shinoda
2
140
Road to Go Gem #rubykaigi
sue445
0
670
より良い開発者体験を実現するために~開発初心者が感じた生成AIの可能性~
masakiokuda
0
200
SREからゼロイチプロダクト開発へ ー越境する打席の立ち方と期待への応え方ー / Product Engineering Night #8
itkq
2
920
React ABC Questions
hirotomoyamada
0
450
彩の国で始めよう。おっさんエンジニアから共有したい、当たり前のことを当たり前にする技術
otsuki
0
150
読んで学ぶ Amplify Gen2 / Amplify と CDK の関係を紐解く #jawsug_tokyo
tacck
PRO
1
160
4/16/25 - SFJug - Java meets AI: Build LLM-Powered Apps with LangChain4j
edeandrea
PRO
2
110
Porting PicoRuby to Another Microcontroller: ESP32
yuuu
4
430
CodePipelineのアクション統合から学ぶAWS CDKの抽象化技術 / codepipeline-actions-cdk-abstraction
gotok365
5
200
Automatically generating types by running tests
sinsoku
2
3.3k
勝手に!深堀り!Cloud Run worker pools / Deep dive Cloud Run worker pools
iselegant
2
370
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
42
7.5k
The Invisible Side of Design
smashingmag
299
50k
GraphQLとの向き合い方2022年版
quramy
46
14k
The World Runs on Bad Software
bkeepers
PRO
67
11k
The Cult of Friendly URLs
andyhume
78
6.3k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
Practical Orchestrator
shlominoach
186
11k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Docker and Python
trallard
44
3.3k
How to Ace a Technical Interview
jacobian
276
23k
Visualization
eitanlees
146
16k
Transcript
ෑډͷ͍"*ษڧձɹ "*δΣωϥϦετݕఆʢ݄ʣ߹֨ߨ࠲
(ݕఆ߹֨ߨ࠲ɹୈճΞδΣϯμ w ߨࢣࣗݾհˍຊߨ࠲ͷతઆ໌ʢʣ w ࢀՃऀࣗݾհʢʣ w (ݕఆͷ֓ཁઆ໌ʢʣ w ࠓճͷֶशൣғΛհ w
ʲ4UVEZ"*ʳ͔ΒࠓճͷֶशൣғͷྫΛϐοΫΞοϓʢʣ w ࠓճͷֶशൣғͰಛʹཧղ͓͖͍ͯͨ͜͠ͱɹʢʣ w ػցֶशͱԿͳͷ͔ɻ࣮ࡍͷϓϩάϥϛϯάΛݟͯΈΑ͏ʢʣ w ࣭ٙԠɹΞϯέʔτʢʣ
ࣗݾհˍຊߨ࠲ͷతઆ໌
ࣗݾհ ҵݝੜ·ΕҵݝҭͪૣҴాେֶʢจԽߏֶ෦ʣ ܯࢹிܯژͷ༗໊٤ళ ϑϦʔϥΠλʔ*5اۀͷਓࣄ୲ ൧ా༑ ϓϩάϥϛϯάྺϲ݄ ͦͷ ճͷ࠳ંܦݧΞϦ
ຊߨ࠲ͷత AIΛֶͼ͍ͨਓΛԠԉ͍ͨ͠ʂ ژͷAIൃలʹߩݙ͍ͨ͠ʂ AIനॻΛಡΈࡅ͘ମྗΛʹ͚ͭͯཉ͍͠ʂ ۀքʹ”Bump of Chicken” ΛՃ͑Δʂʂ
ࢀՃऀࣗݾհ 1. ࢯ໊ 2. झຯ 3. GݕఆΛडݧ͢Δ͔Ͳ͏͔ 4. AIͱͷؔΘΓʹ͍ͭͯ
"*ਓࡐʹ͍ͭͯɺϦΞϧͳখ ʮ"*ΤϯδχΞʹݶΒͣͰ͕͢ɺ ࠓɺݱʹΓͳ͍ͷθωϥϦετͱͯ͠׆༂Ͱ͖Δਓ ͩͱ͍͏͜ͱ͕Α͘ݴΘΕ͍ͯ·͢ɻΞϧΰϦζϜɺΤϯδχΞϦϯάɺϏδ ωεɺͦͷͯ͢ͷͰೳྗΛൃشͰ͖Δਓ͕ٻΊΒΕ͍ͯΔΑ͏Ͱ ͢ɻʯ
CZגࣜձࣾϝϧΧϦɹ"*ΤϯδχΞɹদԬྰԻ͞Μ IUUQTUZQFKQFUGFBUVSF
Gݕఆͷ֓ཁઆ໌
(ݕఆͷ֓ཁઆ໌ఆٛ (ݕఆͱʁ ɹ"*δΣωϥϦετΛഉग़͢ΔͨΊͷݕఆͷ͜ͱ ɹ"*δΣωϥϦετͱʁ ɹʰσΟʔϓϥʔχϯάͷجૅࣝΛ༗͠ɺదͳ׆༻ํΛܾఆ͠ ͯࣄۀԠ༻͢ΔೳྗΛ࣋ͭਓࡐʱʢ+%-"ެࣜ)1ʣ
(ݕఆͷ֓ཁઆ໌ࢼݧ֓ཁ ެࣜHPΛࢀর͠·͠ΐ͏ʂ JDLAެࣜHP
(ݕఆͷ֓ཁઆ໌࣮ࡍͲΜͳࢼݧͳͷʁ ࣌ؒΊͬͪΌݫ͍͠ ͷΛͰղ͢Δʹʹ͔͚ΒΕΔฏۉ࣌ؒඵ ҉هଈͰ͖ΔϨϕϧʹ͠Α͏ʂ ˑ5*14 ɹͯ͢ͷʹνΣοΫϘοΫε͕ଘࡏ͠·͢ɻ ɹগ͠ͰΜͩνΣοΫͯ͠ޙճ͠ʹͯ͠͠·͓͏ʂ
(ݕఆͷ֓ཁઆ໌࣮ࡍͲΜͳࢼݧͳͷʁ ݫ͠Ί ؙ҉هͰͯ͢ʹ͑ΒΕͳ͍ɻ ಛʹσΟʔϓϥʔχϯάʹؔͯ͠ཧղΛਂΊ͍ͨͱ͜Ζɻ ˑTIPS ɹେ·͔ͳߏͪ͜Βɻ ɹ1:ਓೳͷجૅࣝʢୈ1ষʙୈ3ষʣɹɹ2ׂ ɹ2:σΟʔϓϥʔχϯάʢୈ4ষʙୈ7ষʣɹɹ6ׂ ɹ3:࢈ۀͷԠ༻ɾ࣌ࣄʢୈ8ষʙୈ9ষʣ2ׂ
ࠓճͷֶशൣғ
ࠓճͷֶशൣғ ୈ4ষɿػցֶशͷ۩ମతख๏ ʢࢀরɿAIനॻɾGݕఆެࣜςΩετʣ
ʲStudy-AIʳ͔ΒࠓճͷֶशൣғͷྫΛ ϐοΫΞοϓ
4UVEZ"*ͱʁ גࣜձࣾφτϑ͕ӡӦ͢ΔɺਓೳΛֶͿ͜ͱͷͰ͖ΔαΠτ Study-AI
ٖࢼݧΛݟͯΈΑ͏ Study-AI
ٖࢼݧΛݟͯΈΑ͏ Study-AI
ࠓճͷֶशൣғͰಛʹཧղ͓͖͍ͯͨ͜͠ͱ
Ұཡ ୈষΑΓ ػցֶशͷछྨΛཧղ͠Α͏ ϞσϧͷݕূɾධՁํ๏ΛΖ͏ ࣮ࡍʹಈ͘ػցֶशΛݟͯΈΑ͏
ୈষΑΓ ػցֶशͷछྨΛཧղ͠Α͏ ϞσϧͷݕূɾධՁํ๏ΛΖ͏ ࣮ࡍʹಈ͘ػցֶशΛݟͯΈΑ͏
ػցֶशͷछྨ 1. ڭࢣ͋Γֶश 2. ڭࢣͳֶ͠श 3. ڧԽֶश ʢ࣍ճհʣ
AISIA
ڭࢣz͋Γzֶश ֓ཁɿֶशσʔλʹਖ਼ղϥϕϧΛ͚ͭΔʢೖྗͱग़ྗʣ ɹɹɹͦͷσʔλʢઆ໌มʹಛྔʣͱਖ਼ղʢతมʣͱͷؔੑΛ ɹɹɹɹֶश͢Δ ༻ྫɿ͜Ε·ͰूΊͨσʔλ͔ΒύλʔϯΛೝࣝ͠ɺྸ༧ଌ͢Δ ɹɹɹɹʢΞϫϏͷྸ༧ଌɿճؼʣ ɹɹɹɹݘɺೣɺτϥͷը૾Λֶश͠ɺྨ͢ΔϞσϧ ɹɹɹɹʢλΠλχοΫ߸ɿྨʣ ɹɹɹɹˑޙ΄Ͳɺ࣮ࡍʹϓϩάϥϜΛಈ͔͠·͢
ڭࢣ͋ΓֶशʢදతΞϧΰϦζϜʣ w ઢܗճؼɹɹɹɹɹɹɹɹʹɹճؼͷख๏ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹΞϫϏͷྸ༧ଌͰհ w ϩδεςΟοΫճؼɹɹɹʹɹྨͷख๏ w ϥϯμϜϑΥϨετɹɹɹʹɹྨͷख๏ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹλΠλχοΫ߸ੜଘऀ༧ଌͰհ w
ϒʔεςΟϯάɹɹɹɹɹʹɹྨͷख๏ w αϙʔτϕΫλʔϚγϯɹʹɹྨɾճؼͲͪΒ0, w χϡʔϥϧωοτϫʔΫɹʹɹྨɾճؼͲͪΒ0,
ڭࢣ͋ΓֶशʢϩδεςΟοΫճؼʣ http://nonbiri-tereka.hatenablog.com/entry/2014/06/30/134023 γάϞΠυؔ
ڭࢣ͋ΓֶशʢϥϯμϜϑΥϨετʣ ౷ܭϥϘ γάϞΠυؔ
ڭࢣ͋ΓֶशʢϒʔεςΟϯάʣ Géron, Aurélien. "Hands on Machine Learning with scikit-learn and
Tensorflow." (2017).
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋ΓֶशʢχϡʔϥϧωοτϫʔΫʣ https://www.atmarkit.co.jp/ait/articles/1811/20/news012.html ଟύʔηϓτϩϯ
ڭࢣzͳ͠zֶश ֓ཁɿֶशσʔλʹϥϕϧΛ͚ͳ͍Ͱֶश͢ΔʢೖྗͷΈʣ ɹɹɹͦͷσʔλͷ࣋ͭߏɺಛΛࣝผ͢Δ ɹɹɹɹྨࣅσʔλͷάϧʔϐϯάσʔλΛಛ͚ͮΔใΛநग़͢Δ ༻ྫɿ&$αΠτͷߪങσʔλ͔Βɺސ٬ΛΫϥελϦϯά͢Δ ɹɹɹɹσʔλΛಛ͚ΔใΛநग़͢Δʢ࣍ݩݮʣ
ڭࢣzͳ͠zֶश ΫϥελϦϯά
ڭࢣzͳ͠zֶशʢදతΞϧΰϦζϜʣ w LNFBOTɹɹɹɹɹɹ w ओੳɹɹɹɹɹɹɹ
ڭࢣzͳ͠zֶशʢLNFBOTʣ Math Works
ڭࢣzͳ͠zֶशʢLNFBOTʣ Math Works
ڭࢣzͳ͠zֶशʢओੳʣ Tech Clips
Founder
ୈষΑΓ ػցֶशͷछྨΛཧղ͠Α͏ ϞσϧͷݕূɾධՁํ๏ΛΖ͏ ࣮ࡍʹಈ͘ػցֶशΛݟͯΈΑ͏
σʔλͷѻ͍ ະͷσʔλʹର͢Δ༧ଌೳྗ͕େ ༻ҙͰ͖ΔσʔλΛׂ͠ɺධՁʢʹަࠩݕূʣ ɹɹɾ܇࿅༻ (train_set) ɹɹɾධՁ༻ (test_set)
ਖ਼ଇԽ աֶशΛ͍Ͱ൚ԽੑೳΛߴΊΔͨΊͷςΫχοΫ AIZINE
ୈষΑΓ ػցֶशͷछྨΛཧղ͠Α͏ ϞσϧͷݕূɾධՁํ๏ΛΖ͏ ࣮ࡍʹಈ͘ػցֶशΛݟͯΈΑ͏
֓ཁ 1. ͔Δ͜ͱ ػցֶशͷҰ࿈ͷྲྀΕɾલॲཧͷํ ಛྔબఆͷํ 2. Ռ ༧ଌੳ݁Ռ
fin ୯ޠா