$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G検定#2
Search
asagiman
August 25, 2019
Technology
0
99
G検定#2
asagiman
August 25, 2019
Tweet
Share
More Decks by asagiman
See All by asagiman
G検定講座#1
asagiman
0
73
敷居の低いAI勉強会#3
asagiman
0
54
敷居の低いAI勉強会#4
asagiman
0
60
BIRD
asagiman
0
62
開発合宿#1_アジェンダ
asagiman
0
190
画像解析(MNIST)
asagiman
0
88
「さんすう」
asagiman
0
84
みやこもくもく会#8資料「機械学習実践セミナー」
asagiman
0
180
AI & Disconnecting the Dots
asagiman
0
47
Other Decks in Technology
See All in Technology
子育てで想像してなかった「見えないダメージ」 / Unforeseen "hidden burdens" of raising children.
pauli
2
270
Power of Kiro : あなたの㌔はパワステ搭載ですか?
r3_yamauchi
PRO
0
180
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
100
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
230
2025年 開発生産「可能」性向上報告 サイロ解消からチームが能動性を獲得するまで/ 20251216 Naoki Takahashi
shift_evolve
PRO
1
200
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
1.9k
Oracle Cloud Infrastructure IaaS 新機能アップデート 2025/09 - 2025/11
oracle4engineer
PRO
0
160
ディメンショナルモデリングを支えるData Vaultについて
10xinc
1
110
Fashion×AI「似合う」を届けるためのWEARのAI戦略
zozotech
PRO
2
840
Databricks向けJupyter Kernelでデータサイエンティストの開発環境をAI-Readyにする / Data+AI World Tour Tokyo After Party
genda
1
540
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
6
750
エンジニアとPMのドメイン知識の溝をなくす、 AIネイティブな開発プロセス
applism118
4
1.3k
Featured
See All Featured
Producing Creativity
orderedlist
PRO
348
40k
Raft: Consensus for Rubyists
vanstee
141
7.2k
Navigating Team Friction
lara
191
16k
Site-Speed That Sticks
csswizardry
13
1k
Scaling GitHub
holman
464
140k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Music & Morning Musume
bryan
46
7k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
A Modern Web Designer's Workflow
chriscoyier
698
190k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
How to Ace a Technical Interview
jacobian
281
24k
Transcript
ෑډͷ͍"*ษڧձɹ "*δΣωϥϦετݕఆʢ݄ʣ߹֨ߨ࠲
(ݕఆ߹֨ߨ࠲ɹୈճΞδΣϯμ w ߨࢣࣗݾհˍຊߨ࠲ͷతઆ໌ʢʣ w ࢀՃऀࣗݾհʢʣ w (ݕఆͷ֓ཁઆ໌ʢʣ w ࠓճͷֶशൣғΛհ w
ʲ4UVEZ"*ʳ͔ΒࠓճͷֶशൣғͷྫΛϐοΫΞοϓʢʣ w ࠓճͷֶशൣғͰಛʹཧղ͓͖͍ͯͨ͜͠ͱɹʢʣ w ػցֶशͱԿͳͷ͔ɻ࣮ࡍͷϓϩάϥϛϯάΛݟͯΈΑ͏ʢʣ w ࣭ٙԠɹΞϯέʔτʢʣ
ࣗݾհˍຊߨ࠲ͷతઆ໌
ࣗݾհ ҵݝੜ·ΕҵݝҭͪૣҴాେֶʢจԽߏֶ෦ʣ ܯࢹிܯژͷ༗໊٤ళ ϑϦʔϥΠλʔ*5اۀͷਓࣄ୲ ൧ా༑ ϓϩάϥϛϯάྺϲ݄ ͦͷ ճͷ࠳ંܦݧΞϦ
ຊߨ࠲ͷత AIΛֶͼ͍ͨਓΛԠԉ͍ͨ͠ʂ ژͷAIൃలʹߩݙ͍ͨ͠ʂ AIനॻΛಡΈࡅ͘ମྗΛʹ͚ͭͯཉ͍͠ʂ ۀքʹ”Bump of Chicken” ΛՃ͑Δʂʂ
ࢀՃऀࣗݾհ 1. ࢯ໊ 2. झຯ 3. GݕఆΛडݧ͢Δ͔Ͳ͏͔ 4. AIͱͷؔΘΓʹ͍ͭͯ
"*ਓࡐʹ͍ͭͯɺϦΞϧͳখ ʮ"*ΤϯδχΞʹݶΒͣͰ͕͢ɺ ࠓɺݱʹΓͳ͍ͷθωϥϦετͱͯ͠׆༂Ͱ͖Δਓ ͩͱ͍͏͜ͱ͕Α͘ݴΘΕ͍ͯ·͢ɻΞϧΰϦζϜɺΤϯδχΞϦϯάɺϏδ ωεɺͦͷͯ͢ͷͰೳྗΛൃشͰ͖Δਓ͕ٻΊΒΕ͍ͯΔΑ͏Ͱ ͢ɻʯ
CZגࣜձࣾϝϧΧϦɹ"*ΤϯδχΞɹদԬྰԻ͞Μ IUUQTUZQFKQFUGFBUVSF
Gݕఆͷ֓ཁઆ໌
(ݕఆͷ֓ཁઆ໌ఆٛ (ݕఆͱʁ ɹ"*δΣωϥϦετΛഉग़͢ΔͨΊͷݕఆͷ͜ͱ ɹ"*δΣωϥϦετͱʁ ɹʰσΟʔϓϥʔχϯάͷجૅࣝΛ༗͠ɺదͳ׆༻ํΛܾఆ͠ ͯࣄۀԠ༻͢ΔೳྗΛ࣋ͭਓࡐʱʢ+%-"ެࣜ)1ʣ
(ݕఆͷ֓ཁઆ໌ࢼݧ֓ཁ ެࣜHPΛࢀর͠·͠ΐ͏ʂ JDLAެࣜHP
(ݕఆͷ֓ཁઆ໌࣮ࡍͲΜͳࢼݧͳͷʁ ࣌ؒΊͬͪΌݫ͍͠ ͷΛͰղ͢Δʹʹ͔͚ΒΕΔฏۉ࣌ؒඵ ҉هଈͰ͖ΔϨϕϧʹ͠Α͏ʂ ˑ5*14 ɹͯ͢ͷʹνΣοΫϘοΫε͕ଘࡏ͠·͢ɻ ɹগ͠ͰΜͩνΣοΫͯ͠ޙճ͠ʹͯ͠͠·͓͏ʂ
(ݕఆͷ֓ཁઆ໌࣮ࡍͲΜͳࢼݧͳͷʁ ݫ͠Ί ؙ҉هͰͯ͢ʹ͑ΒΕͳ͍ɻ ಛʹσΟʔϓϥʔχϯάʹؔͯ͠ཧղΛਂΊ͍ͨͱ͜Ζɻ ˑTIPS ɹେ·͔ͳߏͪ͜Βɻ ɹ1:ਓೳͷجૅࣝʢୈ1ষʙୈ3ষʣɹɹ2ׂ ɹ2:σΟʔϓϥʔχϯάʢୈ4ষʙୈ7ষʣɹɹ6ׂ ɹ3:࢈ۀͷԠ༻ɾ࣌ࣄʢୈ8ষʙୈ9ষʣ2ׂ
ࠓճͷֶशൣғ
ࠓճͷֶशൣғ ୈ4ষɿػցֶशͷ۩ମతख๏ ʢࢀরɿAIനॻɾGݕఆެࣜςΩετʣ
ʲStudy-AIʳ͔ΒࠓճͷֶशൣғͷྫΛ ϐοΫΞοϓ
4UVEZ"*ͱʁ גࣜձࣾφτϑ͕ӡӦ͢ΔɺਓೳΛֶͿ͜ͱͷͰ͖ΔαΠτ Study-AI
ٖࢼݧΛݟͯΈΑ͏ Study-AI
ٖࢼݧΛݟͯΈΑ͏ Study-AI
ࠓճͷֶशൣғͰಛʹཧղ͓͖͍ͯͨ͜͠ͱ
Ұཡ ୈষΑΓ ػցֶशͷछྨΛཧղ͠Α͏ ϞσϧͷݕূɾධՁํ๏ΛΖ͏ ࣮ࡍʹಈ͘ػցֶशΛݟͯΈΑ͏
ୈষΑΓ ػցֶशͷछྨΛཧղ͠Α͏ ϞσϧͷݕূɾධՁํ๏ΛΖ͏ ࣮ࡍʹಈ͘ػցֶशΛݟͯΈΑ͏
ػցֶशͷछྨ 1. ڭࢣ͋Γֶश 2. ڭࢣͳֶ͠श 3. ڧԽֶश ʢ࣍ճհʣ
AISIA
ڭࢣz͋Γzֶश ֓ཁɿֶशσʔλʹਖ਼ղϥϕϧΛ͚ͭΔʢೖྗͱग़ྗʣ ɹɹɹͦͷσʔλʢઆ໌มʹಛྔʣͱਖ਼ղʢతมʣͱͷؔੑΛ ɹɹɹɹֶश͢Δ ༻ྫɿ͜Ε·ͰूΊͨσʔλ͔ΒύλʔϯΛೝࣝ͠ɺྸ༧ଌ͢Δ ɹɹɹɹʢΞϫϏͷྸ༧ଌɿճؼʣ ɹɹɹɹݘɺೣɺτϥͷը૾Λֶश͠ɺྨ͢ΔϞσϧ ɹɹɹɹʢλΠλχοΫ߸ɿྨʣ ɹɹɹɹˑޙ΄Ͳɺ࣮ࡍʹϓϩάϥϜΛಈ͔͠·͢
ڭࢣ͋ΓֶशʢදతΞϧΰϦζϜʣ w ઢܗճؼɹɹɹɹɹɹɹɹʹɹճؼͷख๏ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹΞϫϏͷྸ༧ଌͰհ w ϩδεςΟοΫճؼɹɹɹʹɹྨͷख๏ w ϥϯμϜϑΥϨετɹɹɹʹɹྨͷख๏ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹλΠλχοΫ߸ੜଘऀ༧ଌͰհ w
ϒʔεςΟϯάɹɹɹɹɹʹɹྨͷख๏ w αϙʔτϕΫλʔϚγϯɹʹɹྨɾճؼͲͪΒ0, w χϡʔϥϧωοτϫʔΫɹʹɹྨɾճؼͲͪΒ0,
ڭࢣ͋ΓֶशʢϩδεςΟοΫճؼʣ http://nonbiri-tereka.hatenablog.com/entry/2014/06/30/134023 γάϞΠυؔ
ڭࢣ͋ΓֶशʢϥϯμϜϑΥϨετʣ ౷ܭϥϘ γάϞΠυؔ
ڭࢣ͋ΓֶशʢϒʔεςΟϯάʣ Géron, Aurélien. "Hands on Machine Learning with scikit-learn and
Tensorflow." (2017).
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋Γֶशʢ47.ʹαϙʔτϕΫλʔϚγϯʣ Logic of Blue
ڭࢣ͋ΓֶशʢχϡʔϥϧωοτϫʔΫʣ https://www.atmarkit.co.jp/ait/articles/1811/20/news012.html ଟύʔηϓτϩϯ
ڭࢣzͳ͠zֶश ֓ཁɿֶशσʔλʹϥϕϧΛ͚ͳ͍Ͱֶश͢ΔʢೖྗͷΈʣ ɹɹɹͦͷσʔλͷ࣋ͭߏɺಛΛࣝผ͢Δ ɹɹɹɹྨࣅσʔλͷάϧʔϐϯάσʔλΛಛ͚ͮΔใΛநग़͢Δ ༻ྫɿ&$αΠτͷߪങσʔλ͔Βɺސ٬ΛΫϥελϦϯά͢Δ ɹɹɹɹσʔλΛಛ͚ΔใΛநग़͢Δʢ࣍ݩݮʣ
ڭࢣzͳ͠zֶश ΫϥελϦϯά
ڭࢣzͳ͠zֶशʢදతΞϧΰϦζϜʣ w LNFBOTɹɹɹɹɹɹ w ओੳɹɹɹɹɹɹɹ
ڭࢣzͳ͠zֶशʢLNFBOTʣ Math Works
ڭࢣzͳ͠zֶशʢLNFBOTʣ Math Works
ڭࢣzͳ͠zֶशʢओੳʣ Tech Clips
Founder
ୈষΑΓ ػցֶशͷछྨΛཧղ͠Α͏ ϞσϧͷݕূɾධՁํ๏ΛΖ͏ ࣮ࡍʹಈ͘ػցֶशΛݟͯΈΑ͏
σʔλͷѻ͍ ະͷσʔλʹର͢Δ༧ଌೳྗ͕େ ༻ҙͰ͖ΔσʔλΛׂ͠ɺධՁʢʹަࠩݕূʣ ɹɹɾ܇࿅༻ (train_set) ɹɹɾධՁ༻ (test_set)
ਖ਼ଇԽ աֶशΛ͍Ͱ൚ԽੑೳΛߴΊΔͨΊͷςΫχοΫ AIZINE
ୈষΑΓ ػցֶशͷछྨΛཧղ͠Α͏ ϞσϧͷݕূɾධՁํ๏ΛΖ͏ ࣮ࡍʹಈ͘ػցֶशΛݟͯΈΑ͏
֓ཁ 1. ͔Δ͜ͱ ػցֶशͷҰ࿈ͷྲྀΕɾલॲཧͷํ ಛྔબఆͷํ 2. Ռ ༧ଌੳ݁Ռ
fin ୯ޠா