$30 off During Our Annual Pro Sale. View Details »

天文学とデータ科学:宇宙を読み解くツールの最前線

 天文学とデータ科学:宇宙を読み解くツールの最前線

名古屋大学理学研究科・宇宙地球環境研究所・名古屋市科学館共催「第30回公開オンラインセミナー:最新のテクノロジーと宇宙」での一般向け講演です。
https://sites.google.com/view/open30

Akio Taniguchi

August 11, 2022
Tweet

More Decks by Akio Taniguchi

Other Decks in Education

Transcript

  1.      େֶɾେֶӃ ݚڀһ ग़਎ ࣗݾ঺հ ✦

    ௕໺ݝ҆ಶ໺ࢢग़਎ ✦ ೥ɿদຊਂࢤߴߍೖֶ ✦ ೥ɿ౦ژେֶཧՊҰྨೖֶ ✦ ೥ɿ౦ژେֶେֶӃ ɹཧֶܥݚڀՊɾఱจֶઐ߈ೖֶ ✦ ೥ɿಉઐ߈मྃʢཧֶത࢜ʣ ✦ ݱࡏɿ໊ݹ԰େֶେֶӃ ɹཧֶݚڀՊɾݚڀһʢϙευΫʣ ✦ ݚڀ෼໺ɿి೾ఱจֶ ★ σʔλՊֶΛԠ༻ͨ͠ి೾๬ԕڸ։ൃ ★ ۜՏத৺ͷϒϥοΫϗʔϧपғͷݚڀ
  2.      େֶɾେֶӃ ݚڀһ ग़਎ ࣗݾ঺հ ✦

    ௕໺ݝ҆ಶ໺ࢢग़਎ ✦ ೥ɿদຊਂࢤߴߍೖֶ ✦ ೥ɿ౦ژେֶཧՊҰྨೖֶ ✦ ೥ɿ౦ژେֶେֶӃ ɹཧֶܥݚڀՊɾఱจֶઐ߈ೖֶ ✦ ೥ɿಉઐ߈मྃʢཧֶത࢜ʣ ✦ ݱࡏɿ໊ݹ԰େֶେֶӃ ɹཧֶݚڀՊɾݚڀһʢϙευΫʣ ✦ ݚڀ෼໺ɿి೾ఱจֶ ★ σʔλՊֶΛԠ༻ͨ͠ి೾๬ԕڸ։ൃ ★ ۜՏத৺ͷϒϥοΫϗʔϧपғͷݚڀ
  3. ໊ݹ԰େֶɾఱମ෺ཧֶݚڀࣨʢ"ݚʣ ࣗݾ঺հ ✦ ௕໺ݝ҆ಶ໺ࢢग़਎ ✦ ೥ɿদຊਂࢤߴߍೖֶ ✦ ೥ɿ౦ژେֶཧՊҰྨೖֶ ✦ ೥ɿ౦ژେֶେֶӃ

    ɹཧֶܥݚڀՊɾఱจֶઐ߈ೖֶ ✦ ೥ɿಉઐ߈मྃʢཧֶത࢜ʣ ✦ ݱࡏɿ໊ݹ԰େֶେֶӃ ɹཧֶݚڀՊɾݚڀһʢϙευΫʣ ✦ ݚڀ෼໺ɿి೾ఱจֶ ★ σʔλՊֶΛԠ༻ͨ͠ి೾๬ԕڸ։ൃ ★ ۜՏத৺ͷϒϥοΫϗʔϧपғͷݚڀ
  4. ຊ೔ͷߨԋ಺༰ ✦ ఱจֶͱσʔλՊֶ ★ ࠷৽ͷ๬ԕڸͰͷ؍ଌํ๏ͱ͸ʁ ★ σʔλՊֶͱ͸ʁԿ͕Ͱ͖Δͷʁ ✦ σʔλՊֶͷԠ༻࠷લઢ ★

    େ͖ͳσʔλˠۜՏͷಛ௃෼ྨ Ϗ ο ά ★ খ͞ͳσʔλˠ௒ղ૾؍ଌ ε Ϟ ʔ ϧ ★ ๬ԕڸ։ൃˠ؍ଌޮ཰Ξοϓ ✦ ఱจֶͱσʔλՊֶͷ͜Ε͔Β ˜*."(&/"4" &4" $4" 454D*
  5. ݱ୅ͷఱจֶΛࢧ͑Δ๬ԕڸ ✦ ๬ԕڸ͸࠷ઌ୺ٕज़ͷू߹ମ ★ ଟ೾௕؍ଌ͕Ͱ͖Δ༷ʑͳ๬ԕڸ ͕஍্ɾӉ஦Ͱ׆༂͍ͯ͠Δ ★ ؍ଌ͸ϞχλʔͱͷʹΒΊͬ͜ ✦ ๬ԕڸຊମʜఱจֶऀͷʠ໨ʡ

    ★ େޱܘˠߴ͍ࢹྗɾूޫྗ ★ ޫֶܥˠ޿͍ࢹ໺ ✦ ৴߸ॲཧɿ๬ԕڸͷʠ಄೴ʡ ★ ิঈޫֶˠϐϯτͷ͋ͬͨը૾ ★ ϊΠζআڈˠ؍ଌޮ཰ͷΞοϓ ˜/"0+ ࠃཱఱจ୆ࡾୋΩϟϯύεͰ ߦΘΕ͍ͯΔఆྫ؍๬ձͷ༷ࢠ
  6. ݱ୅ͷఱจֶΛࢧ͑Δ๬ԕڸ ✦ ๬ԕڸ͸࠷ઌ୺ٕज़ͷू߹ମ ★ ଟ೾௕؍ଌ͕Ͱ͖Δ༷ʑͳ๬ԕڸ ͕஍্ɾӉ஦Ͱ׆༂͍ͯ͠Δ ★ ؍ଌ͸ϞχλʔͱͷʹΒΊͬ͜ ✦ ๬ԕڸຊମʜఱจֶऀͷʠ໨ʡ

    ★ େޱܘˠߴ͍ࢹྗɾूޫྗ ★ ޫֶܥˠ޿͍ࢹ໺ ✦ ৴߸ॲཧɿ๬ԕڸͷʠ಄೴ʡ ★ ิঈޫֶˠϐϯτͷ͋ͬͨը૾ ★ ϊΠζআڈˠ؍ଌޮ཰ͷΞοϓ ˜/"0+ ࠃཱఱจ୆ࡾୋΩϟϯύεͰ ߦΘΕ͍ͯΔఆྫ؍๬ձͷ༷ࢠ "-."๬ԕڸͷ؍ଌࣨ ˜"-." /"0+/3"0&40 (BJBӴ੕ͷӡ༻ࣨ ˜&4"
  7. ΨϦϨΦ͔Βݱ୅·Ͱͷఱจֶͷ೥ͱʢޫֶʣ๬ԕڸͷਐԽ       ʙ ʙ ి೾๬ԕڸ

    ϚΠΫϩ೾ ి೾ εϖʔεఱจֶ ੺֎ઢ ࢵ֎ઢ 9ઢͳͲ ๬ ԕ ڸ ͷ ޱ ܘ ೥ 5.5 &&-5ͳͲ Nڃ๬ԕڸͷ࣌୅ ͢͹Δ ,FDL 7-5ͳͲ Nڃ๬ԕڸͷ࣌୅ ϑοΧʔ๬ԕڸ N ϔʔϧ๬ԕڸ N ΨϦϨΦ ۶ં๬ԕڸ DN χϡʔτϯ ൓ࣹ๬ԕڸ DN ˜/"0+ 5.5 N๬ԕڸ ˜"OESFX%VOO χϡʔτϯ൓ࣹ๬ԕڸ ΨϦϨΦ۶ં๬ԕڸ ϨϓϦΧ ͢͹Δ๬ԕڸ ˜/"0+
  8. ๬ԕڸͷ؍ଌσʔλ͸਺ࣈͷΧλϚϦɿ౷ܭղੳ΍ػցֶश΁ ଠཅͷεϖΫτϧ෼ޫʢՄࢹޫʣ ˜/"4IBSQ,1/0/0*3-BC/40/4'"63" ˜*."(&/"4" &4" $4" 454D* 8FCC&301SPEVDUJPO5FBN ۜՏͷΧϝϥࡱ૾ʢۙɾதؒ੺֎ઢʣ 

                                                                                                   
  9. σʔλՊֶ͕ٻΊΒΕΔ෼໺ ✦ ৽ͨͳ஌ݟʢ৘ใʣͷநग़ ★ େ͖ͳσʔλʢը૾ɾಈըͳͲʣ͔Βಛ ௃ྔΛࣗಈతʹநग़͢Δ ྫɿը૾ʹࣸͬͨ෺ମͷࣝผ ★ খ͞ͳσʔλʢগͳ͍఺਺ͷσʔλ΍৘ ใ͕͚͍ܽͯΔσʔλʣ͔Βଟ͘ͷ৘ใ

    Λநग़͢Δ ྫɿ.3*ͳͲͷղ૾౓ͷ޲্ ✦ Ϗοάσʔλ΁ͷରԠ ★ ύλʔϯೝࣝʢྫɿػցֶशʣʹΑΔݕ ग़ɾൃݟͷޮ཰Խ ★ ෳࡶͳλεΫ΍ҙࢥܾఆͷࣗಈԽ ʢΦʔτϝʔγϣϯʣ IUUQTQBSTFNPEFMJOHKQ Figure 6: Qualitative Results. YOLO running on sample artwork and natural images from the internet. It is mostly accurate although it does think one person is an airplane. including the time to fetch images from the camera and dis- play the detections. The resulting system is interactive and engaging. While YOLO processes images individually, when attached to a webcam it functions like a tracking system, detecting ob- jects as they move around and change in appearance. A demo of the system and the source code can be found on directly on full images. Unlike classifier-based approaches, YOLO is trained on a loss function that directly corresponds to detection performance and the entire model is trained jointly. Fast YOLO is the fastest general-purpose object detec- tor in the literature and YOLO pushes the state-of-the-art in real-time object detection. YOLO also generalizes well to ˜+3FENPOFUBM
  10. ଟ೾௕ͰݟΔӉ஦ͷ͕ͨ͢ ✦ ໨Ͱݟ͑Δޫ͕શͯͰ͸ͳ͍ ★ ໨ʹݟ͑Δޫ͸Մࢹޫͱݺ͹ΕΔ ʠి࣓೾ʡͷ͋ΔҰ෦ͷ೾௕ଳ ★ ྫ͑͹ɿଠཅ͔Βͷࢵ֎ઢʢ67ʣ ★ ྫ͑͹ɿεϚϗͷ8J'Jͷి೾

    ★ ྫ͑͹ɿώτ͕ൃ͢Δ੺֎ઢ ✦ ۜՏ΍੕΋ଟ೾௕Ͱޫ͍ͬͯΔ ★ ೾௕ͷҧ͍⁶ʢओʹʣԹ౓ͷҧ͍ ★ Թ౓ͷҧ͍⁶෺࣭ͷҧ͍ ★ ଟ೾௕Ͱ༷ʑͳ෺࣭͕ݟ͑Δʂ ˜-VJT)FSOBO ˜/"4" ˜/"4"
  11. ఱจֶ͕؍ଌ͢Δʠޫʡͱ͸ɿి࣓೾ͱͦͷ෼ྨ NN ɹϛϦɹ  N ϝʔτϧ  VN ϚΠΫϩ 

    ON ɹφϊɹ  QN ɹϐίɹ  GN ϑΣϜτ ϓϦζϜ ʹΑΔ ޫͷ෼ޫ
  12. ఱจֶ͕؍ଌ͢Δʠޫʡͱ͸ɿి࣓೾ͱͦͷ෼ྨ Մࢹޫ ੺֎ઢ ࢵ֎ઢ 9ઢ ి೾ Ѝઢ NN ɹϛϦɹ 

    N ϝʔτϧ  VN ϚΠΫϩ  ON ɹφϊɹ  QN ɹϐίɹ  GN ϑΣϜτ ϓϦζϜ ʹΑΔ ޫͷ෼ޫ
  13. ఱจֶ͕؍ଌ͢Δʠޫʡͱ͸ɿి࣓೾ͱͦͷ෼ྨ Մࢹޫ ੺֎ઢ ࢵ֎ઢ 9ઢ ి೾ Ѝઢ NN ɹϛϦɹ 

    N ϝʔτϧ  VN ϚΠΫϩ  ON ɹφϊɹ  QN ɹϐίɹ  GN ϑΣϜτ ϓϦζϜ ʹΑΔ ޫͷ෼ޫ ߴ ௿ Թ ౓ ϒϥοΫϗʔϧपғͷ ߴΤωϧΪʔݱ৅ ௒৽੕࢒֚ େ࣭ྔ੕ ੕ ए͍੕ ਖ Ψεʢ෼ࢠӢʣ ԯʙສˆ ສʙສˆ  ʙ ˆ  ʙ ˆ  ʙˆ ʙˆ ʙˆ
  14. ଟ೾௕Λ؍ଌ͢Δ๬ԕڸ ✦ ϛϦ೾ɾαϒϛϦ೾ɾۙ੺֎ઢ ★ େؾʢਫৠؾʣͷٵऩΛड͚Δ ★ ඪߴ͕ߴ͘ס૩ͨ͠৔ॴͰ؍ଌ ★ ྫɿೆถνϦɾΞλΧϚ࠭യ ʢඪߴ໿

    Nʣ ✦ 9ઢɾࢵ֎ઢɾԕ੺֎ઢ ★ ஍্Ͱ͸ٵऩ͞Εͯ͠·͏ ★ Ӊ஦๬ԕڸʢӴ੕ʣͰ؍ଌ ★ ͨͩ͠େޱܘͷ๬ԕڸ͸೉͍͠ େؾʹ્·Ε ஍্ʹಧ͔ͳ ͍೾௕ଳ ޫʢి࣓೾ʣͷ೾௕ େؾʹ્·Ε஍্ ʹಧ͔ͳ͍೾௕ଳ ௕͍ ୹͍  ஍্ʹಧ͔ͳ͍  ஍্ʹಧ͘ େؾͷෆಁ໌౓ 9ઢ ࢵ֎ઢ ੺֎ઢ ి೾ αϒ ϛϦ೾ Մࢹޫ ి೾๬ԕڸ ʢηϯν೾ʣ 9ઢఱจӴ੕ ੺֎ઢఱจӴ੕
  15. σʔλՊֶʷେ͖ͳఱจσʔλ Ϗ ο ά ✦ Մࢹޫɾ੺֎ઢ๬ԕڸ ★ ޿ࢹ໺؍ଌˠ੕ɾۜՏΛଟ਺ݕग़ ★ ଟఱମ෼ޫˠఱମͷڑ཭ͷܾఆ

    ✦ εϩʔϯσδλϧεΧΠαʔϕΠ ★ ඦສݸҎ্ͷۜՏͷΧλϩά ✦ ۜՏͷܗঢ়෼ྨ΍౷ܭྔͷ୳ࠪ ★ ਓͷ໨Ͱߦ͏ͷ͸ݶքˠػցֶश ★ ۜՏͷܗঢ়෼ྨɾಛҟۜՏͷݕग़ ★ ۜՏͷ౷ܭྔͷࣗಈݕग़ ˜/"0+)4$441
  16. σʔλՊֶʷখ͞ͳఱจσʔλ ε Ϟ ʔ ϧ ✦ ఱจ؍ଌͰى͖Δσʔλͷʮ͚ܽʯ ★ ࣌ؒํ޲ͷ͚ܽɿன໷ɾقઅɾఱީ ͷӨڹͰɺఱମΛϞχλͰ͖ͳ͍λ

    Πϛϯά͕ੜ͡Δ ★ ۭؒํ޲ͷ͚ܽɿ๬ԕڸ΍Χϝϥͷ ഑ஔ͕·͹ΒͳͨΊɺఱମΛΧόʔ Ͱ͖ͳ͍ ✦ σʔλͷ͚͕ܽ΋ͨΒ͢Өڹ ★ ๬ԕڸͷ෼ղೳʢࢹྗʣͷ௿Լ ★ ແ਺ͷఱମߏ଄ͷղΛߜΕͳ͍ ✦ σʔλՊֶΛۦ࢖ͨ͠৴߸෮ݩ ϒϥοΫϗʔϧͷࡱ૾ʹຊདྷඞཁͳ๬ԕڸαΠζ ෳ਺๬ԕڸΛ߹੒ͨ͠Ծ૝తͳ๬ԕڸʢ͚ܽ͋Γʣ ˜$BMUFDI.*5)BZTUBDL
  17. σʔλՊֶʷখ͞ͳఱจσʔλ ε Ϟ ʔ ϧ ✦ ఱจ؍ଌͰى͖Δσʔλͷʮ͚ܽʯ ★ ࣌ؒํ޲ͷ͚ܽɿன໷ɾقઅɾఱީ ͷӨڹͰɺఱମΛϞχλͰ͖ͳ͍λ

    Πϛϯά͕ੜ͡Δ ★ ۭؒํ޲ͷ͚ܽɿ๬ԕڸ΍Χϝϥͷ ഑ஔ͕·͹ΒͳͨΊɺఱମΛΧόʔ Ͱ͖ͳ͍ ✦ σʔλͷ͚͕ܽ΋ͨΒ͢Өڹ ★ ๬ԕڸͷ෼ղೳʢࢹྗʣͷ௿Լ ★ ແ਺ͷఱମߏ଄ͷղΛߜΕͳ͍ ✦ σʔλՊֶΛۦ࢖ͨ͠৴߸෮ݩ ແ਺ͷఱମߏ଄ͷղʢՄೳੑʣΛߜΓ͖Εͳ͍ ˜$BMUFDI.*5)BZTUBDL ຊདྷͷϒϥοΫϗʔϧͷߏ଄ʢγϛϡϨʔγϣϯʣ
  18. ఱମͷ෺ཧతߏ଄ʢίϯύΫτɾ࿈ଓతʣΛऔΓࠐΜͩը૾෮ݩ Peppers Giant Wasabi Sailboat HaLRTC STDC Proposed (TV) Proposed

    (SV) FBCP-MP Incomplete IALM LTVNN n Barbara Facade House Lena Peppers S ˜:PLPUB ;IBP BOE$JDIPDLJ ΦϦδφϧը૾ ͚ܽ͋Γը૾ ෮ݩը૾ ը૾Ճ޻Ͱ ҙਤతʹ μϝʔδ෇Ճ ྡΓ߹͏ ϐΫηϧͷ ৭ͷมԽ͸ খ͍͞ͱ Ծఆͯ͠෮ݩ
  19. ఱମͷ෺ཧతߏ଄ʢίϯύΫτɾ࿈ଓతʣΛऔΓࠐΜͩը૾෮ݩ Peppers Giant Wasabi Sailboat HaLRTC STDC Proposed (TV) Proposed

    (SV) FBCP-MP Incomplete IALM LTVNN n Barbara Facade House Lena Peppers S ˜:PLPUB ;IBP BOE$JDIPDLJ ΦϦδφϧը૾ ͚ܽ͋Γը૾ ෮ݩը૾ ը૾Ճ޻Ͱ ҙਤతʹ μϝʔδ෇Ճ ྡΓ߹͏ ϐΫηϧͷ ৭ͷมԽ͸ খ͍͞ͱ Ծఆͯ͠෮ݩ
  20. ݪ࢝࿭੕ܥԁ൫ͷ௒ղ૾ΠϝʔδϯάͰൃݟ͞ΕͨΪϟοϓߏ଄ ALMA continuum images at 1.3 mm (Band 6) of

    the PPD T Tau system. The same color scale given by a power law with a scaling exponent of except for the CLEAN model image (γ = 0.3). A white bar of 0 1 (=14.4 au) is provided for reference to the angular scales. (a) SpM image. e denotes the effective spatial resolution with a size of 0 038 × 0 027 for a PA of 45° .3 in the lower left corner. The resolution is estimated from ce simulation. The contour corresponds to IDT , where IDT is the detection threshold of 272 mJy asec 2 - . Note that the SpM image is not processed m convolution as a CLEAN image is, and the unit of the SpM image is not Jy beam−1. The unit of the SpM image that was initially obtained from l−1, and we convert it to Jy arcsec 2 - . (b) Close-up view centered on T Tau N of the SpM image. A field of view of 0 5 × 0 5 is adopted. (c) BVʢఱจ୯Ґʣ ˜.:BNBHVDIJFUBM BVʢఱจ୯Ґʣ BVʢఱจ୯Ґʣ ݱࡏओྲྀͷը૾෮ݩख๏ εύʔεϞσϦϯάʢ৽ख๏ʣ
  21. σʔλՊֶʷి೾๬ԕڸ։ൃ ✦ ి೾๬ԕڸ ★ Ξϯςφɿి೾Λʠूޫʡ͢Δ ★ ड৴ػɿి೾Λ૿෯ͤ͞Δ ★ ෼ޫܭɿి೾Λ೾௕͝ͱʹ෼ղ͢Δ ɹɹɹɹʢϓϦζϜͷ໾ׂʣ

    ★ ৴߸ॲཧɿఱମҎ֎ͷϊΠζΛফ͢ ✦ ։ൃͷϞνϕʔγϣϯ ★ ޿͍ࢹ໺ͱ೾௕ΛҰ౓ʹݟ͍ͨ ★ ߴ͍ࢹྗͰఱମը૾Λಘ͍ͨ ★ ϊΠζॲཧͰ؍ଌͷޮ཰Λ্͍͛ͨ ˠσʔλՊֶ "45&๬ԕڸ Ξ ε ς ˜"5BOJHVDIJ
  22. σʔλՊֶʷి೾๬ԕڸ։ൃ ✦ ి೾๬ԕڸ ★ Ξϯςφɿి೾Λʠूޫʡ͢Δ ★ ड৴ػɿి೾Λ૿෯ͤ͞Δ ★ ෼ޫܭɿి೾Λ೾௕͝ͱʹ෼ղ͢Δ ɹɹɹɹʢϓϦζϜͷ໾ׂʣ

    ★ ৴߸ॲཧɿఱମҎ֎ͷϊΠζΛফ͢ ✦ ։ൃͷϞνϕʔγϣϯ ★ ޿͍ࢹ໺ͱ೾௕ΛҰ౓ʹݟ͍ͨ ★ ߴ͍ࢹྗͰఱମը૾Λಘ͍ͨ ★ ϊΠζॲཧͰ؍ଌͷޮ཰Λ্͍͛ͨ ˠσʔλՊֶ "45&๬ԕڸ Ξ ε ς Ξϯςφ ˜"5BOJHVDIJ
  23. σʔλՊֶʷి೾๬ԕڸ։ൃ ✦ ి೾๬ԕڸ ★ Ξϯςφɿి೾Λʠूޫʡ͢Δ ★ ड৴ػɿి೾Λ૿෯ͤ͞Δ ★ ෼ޫܭɿి೾Λ೾௕͝ͱʹ෼ղ͢Δ ɹɹɹɹʢϓϦζϜͷ໾ׂʣ

    ★ ৴߸ॲཧɿఱମҎ֎ͷϊΠζΛফ͢ ✦ ։ൃͷϞνϕʔγϣϯ ★ ޿͍ࢹ໺ͱ೾௕ΛҰ౓ʹݟ͍ͨ ★ ߴ͍ࢹྗͰఱମը૾Λಘ͍ͨ ★ ϊΠζॲཧͰ؍ଌͷޮ཰Λ্͍͛ͨ ˠσʔλՊֶ "45&๬ԕڸ Ξ ε ς ड৴ػ ෼ޫܭ ৴߸ ॲཧ ˜"5BOJHVDIJ
  24. εύʔεϞσϦϯάʢը૾ॲཧʣΛԠ༻ͨ͠ి೾؍ଌͷ௿ϊΠζԽ   ؍ଌσʔλ ʢಈըɾը૾ʣ Ώͬ͘Γಈ͘΋ͷ ʢഎܠ੒෼ʣ ࡉ͔͘ಈ͘΋ͷ ʢ৴߸੒෼ʣ ͦͷଞ

    ʢϊΠζ੒෼ʣ ஍ٿେؾ์ࣹ ఱମ৴߸ ϗϫΠτϊΠζ ࣌ࠁ ೾௕ ˜"5BOJHVDIJFUBM ˜;IPVBOE5BP
  25. ໿ԯ೥લͷۜՏͷҰࢎԽ୸ૉ෼ࢠ͕์ͭޫΛݕग़ ৽ ख ๏ ʹ Α Δ ؍ ଌ ޮ

    ཰ ʢ ໿  ഒ ʣ ै དྷ ͷ ޮ ཰ ैདྷख๏ͱεύʔεϞσϦϯά ʢ৽ख๏ʣͷ؍ଌޮ཰ͷൺֱ ϓϦζϜ ʹΑΔ ޫͷ෼ޫ ˜"5BOJHVDIJFUBM
  26. ؍ଌ͔Βղੳ·ͰσʔλՊֶ͕ΤϯυπʔΤϯυͰαϙʔτ͢Δ࣌୅ ఱମ ৴߸ ஍ٿ େؾ ఱମ σʔλ ৴߸ ॲཧ Χϝϥ

    ෼ޫܭ ๬ԕڸ Ξϯςφ ؍ଌ৴߸ ϋʔυ΢ΣΞ ιϑτ΢ΣΞ ϛϦ೾ิঈޫֶʹΑΔ೾໘ิঈ େؾγϛϡϨʔλʹΑΔཧղ ड৴ػͷूੵԽʹΑΔ૷ஔͷQMVHBOEQMBZ σʔλʢϑΥʔϚοτʣͷඪ४Խ Ϋϥ΢υϕʔεͷσʔλղੳɾՄࢹԽ ϦΞϧλΠϜେؾআڈɾఱମݕग़ɾσʔλѹॖ
  27. ·ͱΊ ✦ ఱจֶͱσʔλՊֶ ★ ݱ୅͸๬ԕڸͰσʔλΛࡱΔ࣌୅ ★ σʔλՊֶͰσʔλΛಡΈղ͘ ✦ σʔλՊֶͷԠ༻࠷લઢ ★

    େ͖ͳσʔλˠۜՏͷಛ௃෼ྨ Ϗ ο ά ★ খ͞ͳσʔλˠ௒ղ૾؍ଌ ε Ϟ ʔ ϧ ★ ๬ԕڸ։ൃˠ؍ଌޮ཰Ξοϓ ✦ ఱจֶͱσʔλՊֶͷ͜Ε͔Β ★ αʔϕΠ๬ԕڸʹΑΔσʔλͷߑਫ ★ ؍ଌ͔Βղੳ·ͰσʔλՊֶΛԠ༻ ˜*."(&/"4" &4" $4" 454D*