Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Analysis and Application of PDEs with Random Pa...

Analysis and Application of PDEs with Random Parameters

An overview of PDEs with random input data with a focus on adaptive stochastic collocation

Bettina Schieche

January 18, 2013
Tweet

More Decks by Bettina Schieche

Other Decks in Research

Transcript

  1. Analysis and Application of PDEs with Random Parameters Bettina Schieche,

    Jens Lang Technische Universit¨ at Darmstadt Fachbereich Mathematik Arbeitsgruppe Numerik und Wissenschaftliches Rechnen 20. Treffen des Rhein-Main Arbeitskreises Frankfurt, den 18. Januar 2013 www.mathematik.tu-darmstadt.de
  2. Applications for Random Parameters diffusion coefficients chemical reactions: reaction coefficients

    porous media: permeability rough surfaces: boundary deviations fluid mechanics: boundary conditions Bettina Schieche | 18.01.13 | Motivation | 2/28
  3. Deterministic Problem 1. A(u, α(x)) = f ⇒ u(x) –

    parameter α – solution space e.g. Banach space X Bettina Schieche | 18.01.13 | Problem Formulation | 5/28
  4. Introduction of Uncertainties 1. A(u, α(x)) = f ⇒ u(x)

    2. A(u, α(x, ω)) = f ⇒ u(x, ω) – α = α(x, ω) correlated random field – complete probability space (Ω, Σ, P) – solution space e.g. Lp P (Ω; X) = {v : Ω → X measurable : Ω v p X dP < ∞} Bettina Schieche | 18.01.13 | Problem Formulation | 6/28
  5. “Finite-Noise-Assumption” 1. A(u, α(x)) = f ⇒ u(x) 2. A(u,

    α(x, ω)) = f ⇒ u(x, ω) 3. A(u, α(x, ξ)) = f ⇒ u(x, ξ) – α(x, ω) = ∞ n=1 fn(x)ξn(ω) (Karhunen-Lo` eve expansion, . . . ) – α(x, ξ) = M n=1 fn(x)ξn , ξ = (ξ1, . . . , ξM ) – stochastic independence Bettina Schieche | 18.01.13 | Problem Formulation | 7/28
  6. Transformation onto the Image Measure 1. A(u, α(x)) = f

    ⇒ u(x) 2. A(u, α(x, ω)) = f ⇒ u(x, ω) 3. A(u, α(x, ξ)) = f ⇒ u(x, ξ) 4. A(u, α(x, y)) = f ⇒ u(x, y) – density function ρ(y) – parameter space Γ := ξ1(Ω) × · · · × ξM (Ω) ⊆ RM y1 y2 Bettina Schieche | 18.01.13 | Problem Formulation | 8/28
  7. Overview Problem Formulation Exact Calculation of Moments Adaptive Stochastic Collocation

    Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 9/28
  8. Motivation A(x)u(x, ξ) = f(x, ξ) 1 PDE for the

    expected value A(x)E[u(x, ξ)] = E[f(x, ξ)] 1 tensor product PDE for the second moments∗ (A(x) ⊗ A(˜ x))E[u(x, ξ)u(˜ x, ξ)] = E[f(x, ξ), f(˜ x, ξ)] ∗ [Schwab et al. ’03] Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 10/28
  9. Motivation A(x)u(x, ξ) = f(x, ξ) 1 PDE for the

    expected value A(x)E[u(x, ξ)] = E[f(x, ξ)] 1 tensor product PDE for the second moments∗ (A(x) ⊗ A(˜ x))E[u(x, ξ)u(˜ x, ξ)] = E[f(x, ξ), f(˜ x, ξ)] Moment equations for operators A(x, ξ) available? ∗ [Schwab et al. ’03] Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 10/28
  10. Weighted Operator ∂t v = ξAv v(0) = v0 ⇒

    ∂t E[v] =A E[ξv] Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 11/28
  11. Weighted Operator ∂t v = ξAv v(0) = v0 ⇒

    ∂t E[v] =A E[ξv] but: E[v] = b a v(t, y)ρ(y) dy Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 11/28
  12. Weighted Operator ∂t v = ξAv v(0) = v0 ⇒

    ∂t E[v] =A E[ξv] but: E[v] = b a v(t, y)ρ(y) dy s = t b y = b t t a b t v( b y s, y) =:w(s) ρ( b t s) ds, Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 11/28
  13. Weighted Operator ∂t v = ξAv v(0) = v0 ⇒

    ∂t E[v] =A E[ξv] but: E[v] = b a v(t, y)ρ(y) dy s = t b y = b t t a b t v( b y s, y) =:w(s) ρ( b t s) ds, ∂t w = b S S y S S yAw, w(0) = v0 = b t t a b t v(s, b) ρ( b t s) ds (1 PDE, scaled in time) Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 11/28
  14. Sum of 2 Operators ∂t v = (A0 + ξA1)

    v, ξ ∼ U[−a, a] v(0) = v0 Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 12/28
  15. Sum of 2 Operators ∂t v = (A0 + ξA1)

    v, ξ ∼ U[−a, a] v(0) = v0 E[v] = 1 2a a −a v(t, y) dy Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 12/28
  16. Sum of 2 Operators ∂t v = (A0 + ξA1)

    v, ξ ∼ U[−a, a] v(0) = v0 E[v] = 1 2a a −a v(t, y) dy = 1 2a 0 −a v(t, y) dy + a 0 v(t, y) dy Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 12/28
  17. Sum of 2 Operators ∂t v = (A0 + ξA1)

    v, ξ ∼ U[−a, a] v(0) = v0 E[v] = 1 2a a −a v(t, y) dy = 1 2a 0 −a v(t, y) dy + a 0 v(t, y) dy s = t ∓a y = 1 2t t 0 v(t, −as t ) + v(t, as t ) ds Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 12/28
  18. Sum of 2 Operators ∂t v = (A0 + ξA1)

    v, ξ ∼ U[−a, a] v(0) = v0 E[v] = 1 2a a −a v(t, y) dy = 1 2a 0 −a v(t, y) dy + a 0 v(t, y) dy s = t ∓a y = 1 2t t 0 v(t, −as t ) + v(t, as t ) ds → How to interpret this expression? Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 12/28
  19. Sum of 2 Operators ∂t v = (A0 + ξA1)

    v, ξ ∼ U[−a, a] v(0) = v0 E[v] = 1 2a a −a v(t, y) dy = 1 2a 0 −a v(t, y) dy + a 0 v(t, y) dy s = t ∓a y = 1 2t t 0 v(t, −as t ) + v(t, as t ) ds → How to interpret this expression? Assumption: A0 + yA1 generates C0-semigroup {Sy (t)} almost surely for y ∈ [−a, a] v(t, y) = Sy (t)v0 = exp((A0 + yA1)t)v0 Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 12/28
  20. Sum of 2 Operators: Main Result Theorem: A0, A1 commutative

    ⇒ E[v] = 1 2t u, ∂t u = A0u + v(t, −a) + v(t, a) u(0) = 0 Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 13/28
  21. Sum of 2 Operators: Main Result Theorem: A0, A1 commutative

    ⇒ E[v] = 1 2t u, ∂t u = A0u + v(t, −a) + v(t, a) u(0) = 0 Proof: It holds v(t, y) = Sy (t)v0 = S0 1 − y a t Sa y a t v0 ⇒ 1 2a a 0 v(t, y) dy = 1 2a a 0 S0 1 − y a t Sa y a t v0 dy s = t a y = 1 2t t 0 S0(t − s) Sa(s)v0 =v(s,a) ds Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 13/28
  22. Sum of 2 Operators: Main Result Theorem: A0, A1 commutative

    ⇒ E[v] = 1 2t u, ∂t u = A0u + v(t, −a) + v(t, a) u(0) = 0 Proof: It holds v(t, y) = Sy (t)v0 = S0 1 − y a t Sa y a t v0 ⇒ 1 2a a 0 v(t, y) dy = 1 2a a 0 S0 1 − y a t Sa y a t v0 dy s = t a y = 1 2t t 0 S0(t − s) Sa(s)v0 =v(s,a) ds ⇒ E[v] = 1 2t t 0 S0(t − s)(v(s, −a) + v(s, a)) ds Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 13/28
  23. Sum of 2 Operators: Main Result Theorem: A0, A1 commutative

    ⇒ E[v] = 1 2t u, ∂t u = A0u + v(t, −a) + v(t, a) u(0) = 0 Proof: It holds v(t, y) = Sy (t)v0 = S0 1 − y a t Sa y a t v0 ⇒ 1 2a a 0 v(t, y) dy = 1 2a a 0 S0 1 − y a t Sa y a t v0 dy s = t a y = 1 2t t 0 S0(t − s) Sa(s)v0 =v(s,a) ds ⇒ E[v] = 1 2t t 0 S0(t − s)(v(s, −a) + v(s, a)) ds Variation of constants completes the proof. (2+1 PDEs to be solved) Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 13/28
  24. Numerical Example I ∂t v = v + σξv, (x,

    t) ∈ (0, 1) × (0, 3] v(x, 0) = 0 v(0, t) = v (1, t) = 0 0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 x E[v(x,3)] σ=2 σ=1 σ=0.5 Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 14/28
  25. Chances and Limits of the Approach Chances: A(ξ) = A0

    + M n=1 ξnAn , commuting operators → 3M PDEs to be solved iteratively inhomogeneous terms of the type f(t)g(x) Limits: higher moments arbitrary inhomogeneous terms arbitrary distributions (non-commuting operators . . . ) Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 15/28
  26. . . . Non-Commuting Operators: Numerical Example II ∂t v

    = (1 + f(x)σξ)v , (x, t) ∈ (0, 1) × (0, 0.1] v(x, 0) = 4x(1 − x) v(0, t) = v(1, t) = 0 10−2 10−1 100 10−6 10−5 10−4 10−3 10−2 σ max. relative error E[v] O(σ2) Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 16/28
  27. Overview Problem Formulation Exact Calculation of Moments Adaptive Stochastic Collocation

    Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 17/28
  28. Stochastic Collocation: General Procedure 1. P realizations: {y(j)}P j=1 →

    collocation points Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 18/28
  29. Stochastic Collocation: General Procedure 1. P realizations: {y(j)}P j=1 →

    collocation points 2. P deterministic problems A(uj, α(x, y(j)) = f, uj := u(x, y(j)), j = 1, . . . , P Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 18/28
  30. Stochastic Collocation: General Procedure 1. P realizations: {y(j)}P j=1 →

    collocation points 2. P deterministic problems A(uj, α(x, y(j)) = f, uj := u(x, y(j)), j = 1, . . . , P 3. interpolation of all solutions Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 18/28
  31. Stochastic Collocation: General Procedure 1. P realizations: {y(j)}P j=1 →

    collocation points 2. P deterministic problems A(uj, α(x, y(j)) = f, uj := u(x, y(j)), j = 1, . . . , P 3. interpolation of all solutions 4. calculation of statistical quantities: quadrature Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 18/28
  32. Stochastic Collocation: General Procedure 1. P realizations: {y(j)}P j=1 →

    collocation points 2. P deterministic problems A(uj, α(x, y(j)) = f, uj := u(x, y(j)), j = 1, . . . , P 3. interpolation of all solutions 4. calculation of statistical quantities: quadrature 5. adaptive addition of new collocation points Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 18/28
  33. Stochastic Collocation: General Procedure 1. P realizations: {y(j)}P j=1 →

    collocation points 2. P deterministic problems A(uj, α(x, y(j)) = f, uj := u(x, y(j)), j = 1, . . . , P 3. interpolation of all solutions 4. calculation of statistical quantities: quadrature 5. adaptive addition of new collocation points Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 18/28
  34. Full and Sparse Grids full, isotropic Bettina Schieche | 18.01.13

    | Adaptive Stochastic Collocation | 19/28
  35. Full and Sparse Grids full, isotropic Bettina Schieche | 18.01.13

    | Adaptive Stochastic Collocation | 19/28
  36. Full and Sparse Grids full, isotropic Bettina Schieche | 18.01.13

    | Adaptive Stochastic Collocation | 19/28
  37. Full and Sparse Grids full, isotropic Bettina Schieche | 18.01.13

    | Adaptive Stochastic Collocation | 19/28
  38. Algorithmic Details suitable collocation points: → Clenshaw-Curtis, Gauss-Patterson parallel solutions

    of PDEs in each iteration: → arbitrary solver (black box) global interpolation (Lagrange) dimension adaptive refinement∗ with respect to a quantity of interest → error indicator: relative change ∗[Gerstner & Griebel ’03] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 20/28
  39. Numerical Example: Boussinesq Equation ∂u ∂t + (u · ∇)u

    − 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
  40. Numerical Example: Boussinesq Equation ∂u ∂t + (u · ∇)u

    − 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
  41. Numerical Example: Boussinesq Equation ∂u ∂t + (u · ∇)u

    − 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
  42. Numerical Example: Boussinesq Equation ∂u ∂t + (u · ∇)u

    − 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
  43. Numerical Example: Boussinesq Equation ∂u ∂t + (u · ∇)u

    − 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
  44. Numerical Example: Boussinesq Equation ∂u ∂t + (u · ∇)u

    − 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
  45. Numerical Example: Boussinesq Equation ∂u ∂t + (u · ∇)u

    − 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) quantity of interest: heat exchange at the horizontal walls (Nusselt numbers) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
  46. Uncertain Boundary Condition T = 1 + σ M n=1

    fn(x1)ξn (0,0) (10,0) T = 0 (0,1) ξn uniformly distributed correlation length L = 5, 10, 20 ⇒ M = 9, 5, 3 standard deviation σ = 0.125, 0.25, 0.5 Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 22/28
  47. Uncertainty Quantification with respect to σ 0.125 0.25 0.5 10−3

    10−2 10−1 100 101 standard deviation σ |E[Nu]−Nu(deterministic)| L=20 L=10 L=5 → quadratic dependence 0.125 0.25 0.5 10−1 100 101 standard deviation σ standard deviation of Nu L=20 L=10 L=5 → linear dependence Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 23/28
  48. Uncertainty Quantification with respect to L 5 10 20 10−3

    10−2 10−1 100 101 correlation length L |E[Nu]−Nu(deterministic)| σ=0.5 σ=0.25 σ=0.125 5 10 20 10−1 100 101 correlation length L standard deviation of Nu σ=0.5 σ=0.25 σ=0.125 → very low dependence Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 24/28
  49. Density Functions, Number of Collocation Points L = 10 0

    2 4 6 0 0.2 0.4 0.6 0.8 1 range of Nu σ=0.5 σ=0.25 σ=0.125 σ = 0.25 0 2 4 6 0 0.2 0.4 0.6 0.8 1 range of Nu L=20 L=10 L=5 P σ = 0.125 σ = 0.25 σ = 0.5 L = 5 59 59 163 L = 10 15 15 23 L = 20 11 11 19 Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 25/28
  50. Further Uncertainties temperature: 5 random variables, uniform inflow velocity: 12

    random variables, normal Re: log-normal Fr: normal Pe: triangular 20 random variables density function (63 collocation points) 0 1 2 3 4 5 6 0 0.1 0.2 0.3 0.4 0.5 range of Nu Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 26/28
  51. Introduction of a Random (Rough) Surface bottom = 0 +

    0.1 41 n=1 fn(x1)ξn small correlation length 41 random variables: uniform density dunction (211 collocation points) 2 2.5 3 3.5 0 1 2 3 4 5 6 range of Nu Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 27/28
  52. Summary Summary: considered problems: PDEs with correlated random parameters exact

    calculation of moments for selected problems possible stochastic collocation as an efficient stochastic discretization tool Ongoing Research: analysis of commutator errors stochastic adjoint error estimation model order reduction Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 28/28
  53. Konstruktion von d¨ unnbesetzten Gittern: Smolyak Algorithmus als Quadraturformel 1.

    geschachtelte Folge von 1d-Quadraturformeln: {Ui}i=1,2,... 2. definiere Tensorprodukt (Ui ⊗ Ul)(g) := j,k wj wk g(xj, xk ) 3. definiere Update-Formeln {∆i}i=1,2,... ∆1 := U1 ∆i := Ui − Ui−1 , i ≥ 2 4. Smolyak’s Formel A(k, M) := i1+...+iM ≤k+M ∆i1 ⊗ · · · ⊗ ∆iM Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 28/28
  54. Wahl der rechten Seite des stochastischen adjungierten Problems A(u, ξ)

    = f(ξ) Q(u) = N(E[uq]) Q(u) − Q(uhξ ) ≈ N (E[uq hξ ])E[quq−1 hξ (u − uhξ )] = E[ qN (E[uq hξ ])uq−1 hξ rechte Seite von A∗(φ) (u − uhξ )] = E[ φ(A(u) =f −A(uhξ ))] = E[ φ(ξ)Res(uhξ )] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 28/28
  55. Modellreduktion des adjungierten Problems Proper Orthogonal Decomposition (POD) 1. Auswerten

    des adjungierten Problems in wenigen Kollokationspunkten: A∗(y(j))Φj = G, j = 1, . . . , P 2. Snapshot-Matrix S = (Φ1, · · · , ΦP) 3. Singul¨ arwertzerlegung von S → reduzierte Basis ϕ 4. Galerkin-Projektion auf ϕ: A∗ R (ξ)ΦR(ξ) = GR, dim(A∗ R ) dim(A∗) (1) 5. Auswerten von (1) in beliebig vielen Kollokationspunkten Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 28/28
  56. Details zum Beweis A(a)S0(t)v = lim s→0+ Sa(s)S0(t)v − S0(t)v

    s = lim s→0+ S0(t)Sa(s)v − S0(t)v s = S0(t) lim s→0+ Sa(s)v − v s = S0(t)A(a)v mit Sa(s)S0(t)v = exp(A(a)s) exp(A(0)s)v = exp((A(a) + A(0))s) = exp(A(0)s) exp(A(a)s)v = S0(t)Sa(s)v Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 28/28