Jens Lang Technische Universit¨ at Darmstadt Fachbereich Mathematik Arbeitsgruppe Numerik und Wissenschaftliches Rechnen 20. Treffen des Rhein-Main Arbeitskreises Frankfurt, den 18. Januar 2013 www.mathematik.tu-darmstadt.de
2. A(u, α(x, ω)) = f ⇒ u(x, ω) – α = α(x, ω) correlated random field – complete probability space (Ω, Σ, P) – solution space e.g. Lp P (Ω; X) = {v : Ω → X measurable : Ω v p X dP < ∞} Bettina Schieche | 18.01.13 | Problem Formulation | 6/28
∂t E[v] =A E[ξv] but: E[v] = b a v(t, y)ρ(y) dy s = t b y = b t t a b t v( b y s, y) =:w(s) ρ( b t s) ds, Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 11/28
∂t E[v] =A E[ξv] but: E[v] = b a v(t, y)ρ(y) dy s = t b y = b t t a b t v( b y s, y) =:w(s) ρ( b t s) ds, ∂t w = b S S y S S yAw, w(0) = v0 = b t t a b t v(s, b) ρ( b t s) ds (1 PDE, scaled in time) Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 11/28
v, ξ ∼ U[−a, a] v(0) = v0 E[v] = 1 2a a −a v(t, y) dy = 1 2a 0 −a v(t, y) dy + a 0 v(t, y) dy s = t ∓a y = 1 2t t 0 v(t, −as t ) + v(t, as t ) ds Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 12/28
v, ξ ∼ U[−a, a] v(0) = v0 E[v] = 1 2a a −a v(t, y) dy = 1 2a 0 −a v(t, y) dy + a 0 v(t, y) dy s = t ∓a y = 1 2t t 0 v(t, −as t ) + v(t, as t ) ds → How to interpret this expression? Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 12/28
v, ξ ∼ U[−a, a] v(0) = v0 E[v] = 1 2a a −a v(t, y) dy = 1 2a 0 −a v(t, y) dy + a 0 v(t, y) dy s = t ∓a y = 1 2t t 0 v(t, −as t ) + v(t, as t ) ds → How to interpret this expression? Assumption: A0 + yA1 generates C0-semigroup {Sy (t)} almost surely for y ∈ [−a, a] v(t, y) = Sy (t)v0 = exp((A0 + yA1)t)v0 Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 12/28
⇒ E[v] = 1 2t u, ∂t u = A0u + v(t, −a) + v(t, a) u(0) = 0 Proof: It holds v(t, y) = Sy (t)v0 = S0 1 − y a t Sa y a t v0 ⇒ 1 2a a 0 v(t, y) dy = 1 2a a 0 S0 1 − y a t Sa y a t v0 dy s = t a y = 1 2t t 0 S0(t − s) Sa(s)v0 =v(s,a) ds Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 13/28
⇒ E[v] = 1 2t u, ∂t u = A0u + v(t, −a) + v(t, a) u(0) = 0 Proof: It holds v(t, y) = Sy (t)v0 = S0 1 − y a t Sa y a t v0 ⇒ 1 2a a 0 v(t, y) dy = 1 2a a 0 S0 1 − y a t Sa y a t v0 dy s = t a y = 1 2t t 0 S0(t − s) Sa(s)v0 =v(s,a) ds ⇒ E[v] = 1 2t t 0 S0(t − s)(v(s, −a) + v(s, a)) ds Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 13/28
⇒ E[v] = 1 2t u, ∂t u = A0u + v(t, −a) + v(t, a) u(0) = 0 Proof: It holds v(t, y) = Sy (t)v0 = S0 1 − y a t Sa y a t v0 ⇒ 1 2a a 0 v(t, y) dy = 1 2a a 0 S0 1 − y a t Sa y a t v0 dy s = t a y = 1 2t t 0 S0(t − s) Sa(s)v0 =v(s,a) ds ⇒ E[v] = 1 2t t 0 S0(t − s)(v(s, −a) + v(s, a)) ds Variation of constants completes the proof. (2+1 PDEs to be solved) Bettina Schieche | 18.01.13 | Exact Calculation of Moments | 13/28
− 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
− 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
− 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
− 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
− 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
− 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
− 2 Re div (u) + ∇p = − 1 Fr T g div u = 0 ∂T ∂t + (u · ∇)T − 1 Pe ∆T = 0 velocity u pressure p temperature T Re = 10, Pe = 20/3, Fr = 1/150∗ normalized gravitation vector g ↓ T = 1 (0,0) (10,0) T = 0 (0,1) quantity of interest: heat exchange at the horizontal walls (Nusselt numbers) ∗[Evans, Paolucci ’90] Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 21/28
random variables, normal Re: log-normal Fr: normal Pe: triangular 20 random variables density function (63 collocation points) 0 1 2 3 4 5 6 0 0.1 0.2 0.3 0.4 0.5 range of Nu Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 26/28
calculation of moments for selected problems possible stochastic collocation as an efficient stochastic discretization tool Ongoing Research: analysis of commutator errors stochastic adjoint error estimation model order reduction Bettina Schieche | 18.01.13 | Adaptive Stochastic Collocation | 28/28