Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 / Deep Multi-Modal Sets
Search
chck
June 29, 2020
Research
0
13
論文読み会 / Deep Multi-Modal Sets
社内論文読み会、PaperFridayでの発表資料です
chck
June 29, 2020
Tweet
Share
More Decks by chck
See All by chck
CyberAgent AI Lab研修 / Container for Research
chck
0
1.8k
CyberAgent AI Lab研修 / Code Review in a Team
chck
2
1.6k
論文読み会 / Socio-Technical Anti-Patterns in Building ML-Enabled Software: Insights from Leaders on the Forefront
chck
0
40
CyberAgent AI事業本部MLOps研修Container編 / Container for MLOps
chck
2
5.5k
論文読み会 / GLAZE: Protecting Artists from Style Mimicry by Text-to-Image Models
chck
0
23
論文読み会 / On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
chck
0
8
論文読み会 / GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Networks
chck
0
14
機械学習開発のためのコンテナ入門 / Container for ML
chck
0
910
Web系企業研究所における研究開発を加速させるエコシステム / Ecosystem accelerates our R&D in CyberAgent AI Lab
chck
0
140
Other Decks in Research
See All in Research
Submeter-level land cover mapping of Japan
satai
3
150
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
110
能動適応的実験計画
masakat0
2
610
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
360
ノンパラメトリック分布表現を用いた位置尤度場周辺化によるRTK-GNSSの整数アンビギュイティ推定
aoki_nosse
0
330
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
230
IMC の細かすぎる話 2025
smly
2
270
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
6
3.7k
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
公立高校入試等に対する受入保留アルゴリズム(DA)導入の提言
shunyanoda
0
6.3k
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
110
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.8k
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Thoughts on Productivity
jonyablonski
69
4.7k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
The Cult of Friendly URLs
andyhume
79
6.5k
How GitHub (no longer) Works
holman
314
140k
The Cost Of JavaScript in 2023
addyosmani
51
8.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.5k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Practical Orchestrator
shlominoach
189
11k
Done Done
chrislema
184
16k
Transcript
Deep Multi-Modal Sets 20/06/29 PaperFriday, Yuki Iwazaki@AI Lab
2 Point: 特徴のDown SamplingやScalabilityを考慮した Multi-Modal Encoderを提案 Authors: Austin Reiter, Menglin
Jia, Pu Yang, Ser-Nam Lim - Facebook AI Research, Cornell University 選定理由: - Creative Researchのslackでちょっと話題に出た - 俺より強いマルチモーダル表現に会いに行く
The Multi-Modal Problem 3
Multi-Modal Task? 複数の特徴タイプをモデル内で結合するタスク 4
non_linear_layers score 5 SimpleなMulti-Modal Model XC = concat([X1, . .
. XI ]) -> MLP -> Score
non_linear_layers score 6 問題点1: 特定Modal特徴がないことを zero paddingで表すのは不自然 0. 0. 0.
non_linear_layers score 7 問題点2: 特定Modal特徴の複数発生に 対応できていない 最大発生数で表現するのは無駄
non_linear_layers score 8 問題点3: 特徴次元に不均衡があると 高次元なModalityが Vectorを支配してしまう 10 × 12
178 × 100 200 × 200 × 3
non_linear_layers score 9 問題点3: 特に特徴次元に不均衡があると 高次元なModalityが Vectorを支配してしまう 10 × 12
178 × 100 200 × 200 × 3 ModalityのCardinalityに応じてScaleしながら 共通の次元に Encodeするモデルを提案
Pooling Layer 10
Pooling Layer: CNNの構成要素の 1つ 行列の小領域毎にMax, Avg, Sum, Min等をかけ情報を圧縮
Deep Sets 12
Deep Sets [Zaheer, 17] CNN(Pooling)の位置不変性を利用して Scalableな埋め込み表現を学習するモデル CNNでいう画像サイズが変わろうが、GCNでいうユー ザに対するアイテムの順番が変わろうが、 各要素、特徴自体の位置はPoolingのおかげで 大きく変わらない
15 Graph Convolutional Network
Proposed Method 16
Deep Multi-Modal Sets 17
Feature Importance可視化のために Poolingを通じてModality毎に 圧縮された特徴を得る Maxならそのmodalityにおける 特徴の最大値、Sumなら 合計値 18 特にMax Poolingの場合
Max要素を逆算(argmax)してModalityレベルで 解釈しやすい特徴重要度が得られる -> Pooling後の中間特徴として生き残った特徴 -> 予測結果に影響を与えている
Experiments 19
Datasets: Ads-Parallelity Dataset 広告画像 + 説明文-> 関係性 Parallelity: ImageとTextが一貫して同じメッセージ性を持つか (どちらかがなくても伝わるか)
20
Datasets: MultiModal-IMDb 映画のジャケ画像 + 説明文 -> 映画のジャンル 21
Features 22
Implementation non linear layers Modality wise pooling WSL Face OCR
RoBERTa Index Embedding +Meta
Results: Ads-Parallelity 28
None
Results: MM-IMDb 30
None
Conclusion 37
Conclusion and Future Work ◂ DynamicなModalityをうまくモデリングできる Multi-Modal Architectureを提案 ◂ PoolingがDown
Samplingのように働く ◂ Max-Poolingを用いた重要度の可視化 ◂ エラー分析が容易に ◂ Videoへの拡張が今後の課題 38
Comment - Pooling自体はシンプルで直感的なので実装しやすい - 特徴抽出器まではfreezeなので計算コストも低そう - Pooling Encoderの出力次元Dがハイパラで肝 - Adsは32次元,
MM-IMDbは1024次元らしい - 説明文(RoBERTa)だけでそこそこ精度が出ている気がする - タスクによるが説明文があればOCRテキストはそこまで要らない? - OCR自体の検出性能が絡んでいそう 39
References - Permutation-equivariant neural networks applied to dynamics prediction -
Graph Neural Networks and Permutation invariance - Connections between Neural Networks and Pure Mathematics - Deep Sets 40
41 Thanks! Any questions? You can find me at ◂
@chck ◂ #times_chck ◂ iwazaki_yuki@cyberagent.co.jp
Feedback - 特徴抽出器もコミコミのe2e? - GPUも1枚なのでおそらく抽出後が入力 - それはそれで実装が重いですね - pooling type結局どれがいいのか
- 精度大差ないのでFeature Importanceとの兼ね合いで Maxでいいのでは