Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 / Deep Multi-Modal Sets
Search
chck
June 29, 2020
Research
0
19
論文読み会 / Deep Multi-Modal Sets
社内論文読み会、PaperFridayでの発表資料です
chck
June 29, 2020
Tweet
Share
More Decks by chck
See All by chck
CyberAgent AI Lab研修 / Container for Research
chck
1
2.1k
CyberAgent AI Lab研修 / Code Review in a Team
chck
3
2.1k
論文読み会 / Socio-Technical Anti-Patterns in Building ML-Enabled Software: Insights from Leaders on the Forefront
chck
0
68
CyberAgent AI事業本部MLOps研修Container編 / Container for MLOps
chck
3
5.8k
論文読み会 / GLAZE: Protecting Artists from Style Mimicry by Text-to-Image Models
chck
0
47
論文読み会 / On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
chck
0
26
論文読み会 / GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Networks
chck
0
38
機械学習開発のためのコンテナ入門 / Container for ML
chck
0
950
Web系企業研究所における研究開発を加速させるエコシステム / Ecosystem accelerates our R&D in CyberAgent AI Lab
chck
0
150
Other Decks in Research
See All in Research
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
590
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
170
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
530
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
140
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
300
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
2
290
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
170
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
410
2025-11-21-DA-10th-satellite
yegusa
0
110
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
510
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
180
Featured
See All Featured
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
200
A Soul's Torment
seathinner
5
2.2k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
44
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
The untapped power of vector embeddings
frankvandijk
1
1.5k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2k
Mobile First: as difficult as doing things right
swwweet
225
10k
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Transcript
Deep Multi-Modal Sets 20/06/29 PaperFriday, Yuki Iwazaki@AI Lab
2 Point: 特徴のDown SamplingやScalabilityを考慮した Multi-Modal Encoderを提案 Authors: Austin Reiter, Menglin
Jia, Pu Yang, Ser-Nam Lim - Facebook AI Research, Cornell University 選定理由: - Creative Researchのslackでちょっと話題に出た - 俺より強いマルチモーダル表現に会いに行く
The Multi-Modal Problem 3
Multi-Modal Task? 複数の特徴タイプをモデル内で結合するタスク 4
non_linear_layers score 5 SimpleなMulti-Modal Model XC = concat([X1, . .
. XI ]) -> MLP -> Score
non_linear_layers score 6 問題点1: 特定Modal特徴がないことを zero paddingで表すのは不自然 0. 0. 0.
non_linear_layers score 7 問題点2: 特定Modal特徴の複数発生に 対応できていない 最大発生数で表現するのは無駄
non_linear_layers score 8 問題点3: 特徴次元に不均衡があると 高次元なModalityが Vectorを支配してしまう 10 × 12
178 × 100 200 × 200 × 3
non_linear_layers score 9 問題点3: 特に特徴次元に不均衡があると 高次元なModalityが Vectorを支配してしまう 10 × 12
178 × 100 200 × 200 × 3 ModalityのCardinalityに応じてScaleしながら 共通の次元に Encodeするモデルを提案
Pooling Layer 10
Pooling Layer: CNNの構成要素の 1つ 行列の小領域毎にMax, Avg, Sum, Min等をかけ情報を圧縮
Deep Sets 12
Deep Sets [Zaheer, 17] CNN(Pooling)の位置不変性を利用して Scalableな埋め込み表現を学習するモデル CNNでいう画像サイズが変わろうが、GCNでいうユー ザに対するアイテムの順番が変わろうが、 各要素、特徴自体の位置はPoolingのおかげで 大きく変わらない
15 Graph Convolutional Network
Proposed Method 16
Deep Multi-Modal Sets 17
Feature Importance可視化のために Poolingを通じてModality毎に 圧縮された特徴を得る Maxならそのmodalityにおける 特徴の最大値、Sumなら 合計値 18 特にMax Poolingの場合
Max要素を逆算(argmax)してModalityレベルで 解釈しやすい特徴重要度が得られる -> Pooling後の中間特徴として生き残った特徴 -> 予測結果に影響を与えている
Experiments 19
Datasets: Ads-Parallelity Dataset 広告画像 + 説明文-> 関係性 Parallelity: ImageとTextが一貫して同じメッセージ性を持つか (どちらかがなくても伝わるか)
20
Datasets: MultiModal-IMDb 映画のジャケ画像 + 説明文 -> 映画のジャンル 21
Features 22
Implementation non linear layers Modality wise pooling WSL Face OCR
RoBERTa Index Embedding +Meta
Results: Ads-Parallelity 28
None
Results: MM-IMDb 30
None
Conclusion 37
Conclusion and Future Work ◂ DynamicなModalityをうまくモデリングできる Multi-Modal Architectureを提案 ◂ PoolingがDown
Samplingのように働く ◂ Max-Poolingを用いた重要度の可視化 ◂ エラー分析が容易に ◂ Videoへの拡張が今後の課題 38
Comment - Pooling自体はシンプルで直感的なので実装しやすい - 特徴抽出器まではfreezeなので計算コストも低そう - Pooling Encoderの出力次元Dがハイパラで肝 - Adsは32次元,
MM-IMDbは1024次元らしい - 説明文(RoBERTa)だけでそこそこ精度が出ている気がする - タスクによるが説明文があればOCRテキストはそこまで要らない? - OCR自体の検出性能が絡んでいそう 39
References - Permutation-equivariant neural networks applied to dynamics prediction -
Graph Neural Networks and Permutation invariance - Connections between Neural Networks and Pure Mathematics - Deep Sets 40
41 Thanks! Any questions? You can find me at ◂
@chck ◂ #times_chck ◂
[email protected]
Feedback - 特徴抽出器もコミコミのe2e? - GPUも1枚なのでおそらく抽出後が入力 - それはそれで実装が重いですね - pooling type結局どれがいいのか
- 精度大差ないのでFeature Importanceとの兼ね合いで Maxでいいのでは