Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI Basics and Neural Networks Introduction
Search
Cheesecake Labs
October 31, 2017
Technology
0
76
AI Basics and Neural Networks Introduction
Cheesecake Labs
October 31, 2017
Tweet
Share
More Decks by Cheesecake Labs
See All by Cheesecake Labs
Cats' wellness & care
cheesecakelabs
0
49
How do we create the first impressions?
cheesecakelabs
0
54
Menstrual cup: suit and freedom
cheesecakelabs
0
66
Life is a cycle, better with a bicycle
cheesecakelabs
0
51
Interview Process: how to get the best of people
cheesecakelabs
1
84
My capsule wardrobe experience
cheesecakelabs
3
59
Stonewall Rebellion and its impact on LGBTQIA+ history
cheesecakelabs
1
39
Pregnancy, childbirth and breastfeeding: What do I have to do with it?
cheesecakelabs
0
47
MBTI - Psychological types described by Jung
cheesecakelabs
0
130
Other Decks in Technology
See All in Technology
データアナリストからアナリティクスエンジニアになった話
hiyokko_data
2
450
未経験者・初心者に贈る!40分でわかるAndroidアプリ開発の今と大事なポイント
operando
5
500
AI開発ツールCreateがAnythingになったよ
tendasato
0
130
複数サービスを支えるマルチテナント型Batch MLプラットフォーム
lycorptech_jp
PRO
0
340
Android Audio: Beyond Winning On It
atsushieno
0
120
人工衛星のファームウェアをRustで書く理由
koba789
15
7.8k
エラーとアクセシビリティ
schktjm
1
1.2k
ブロックテーマ時代における、テーマの CSS について考える Toro_Unit / 2025.09.13 @ Shinshu WordPress Meetup
torounit
0
120
実践!カスタムインストラクション&スラッシュコマンド
puku0x
0
380
職種の壁を溶かして開発サイクルを高速に回す~情報透明性と職種越境から考えるAIフレンドリーな職種間連携~
daitasu
0
160
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
410
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
2
220
Featured
See All Featured
Fireside Chat
paigeccino
39
3.6k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Designing for Performance
lara
610
69k
RailsConf 2023
tenderlove
30
1.2k
Context Engineering - Making Every Token Count
addyosmani
2
41
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Done Done
chrislema
185
16k
Transcript
Artificial Intelligence Basics and Neural Networks Introduction Frederico Jordan
What is Artificial Intelligence (AI)?
AI in Popular Culture
AI Effect "AI is whatever hasn't been done yet." Douglas
Hofstadter "Every time we figure out a piece of it, it stops being magical; we say, 'Oh, that's just a computation.'" Rodney Brooks
Types of Artificial Intelligence
Weak AI (Narrow AI) Non-sentient machine intelligence, typically focused on
a narrow task.
Strong AI Hypothetical Sentient machine (with consciousness, sentience and mind).
Strong AI Hypothetical Sentient machine (with consciousness, sentience and mind).
Artificial general intelligence (AGI): Machine with the ability to apply intelligence to any problem, rather than just one specific problem "At least as smart as a typical human".
Superintelligence Hypothetical Artificial intelligence far surpassing that of the brightest
and most gifted human minds.
Artificial Intelligence Branches • Machine learning ◦ Neural networks ▪
Perceptron ▪ Recurrent neural network ▪ Convoluted neural network ◦ Support Vector Machines (SVM) • Fuzzy systems • Evolutionary algorithms ◦ Genetic algorithm ◦ Differential evolution • Swarm Intelligence • Probabilistic methods
Neural Networks What is this ?
Neural Networks Uses
OK, but what are they?
Let’s get TECHNICAL!
Perceptrons
Perceptrons • (-2) and (-2) – Weights (W) • 3
– Bias/Threshold (b)
Perceptrons
Perceptrons • x 1 – Is it raining? • x
2 – Does your girlfriend/boyfriend want to go? • x 3 – Is it near public transportation?
Perceptrons
Neural Networks Finally!
Perceptrons
Neural Networks
How do they learn?
Real World Problem!
Recognizing Handwritten Digits
Database The MNIST (Modified National Institute of Standards and Technology)
database Contains 60,000 training images and 10,000 testing images.
Neural Network Architecture
Measuring Outcome! Cost Function
Neural Network Architecture
Neural Network Architecture
Cost Function
Neural Networks
Learning
Gradient Descent
Cost Function
Gradient Descent
Gradient Descent
Bonus github.com/fredericojordan/neural playground.tensorflow.org
Acknowledgements NeuralNetworksAndDeepLearning.com Michael Nielsen
Thank you!