$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI Basics and Neural Networks Introduction
Search
Cheesecake Labs
October 31, 2017
Technology
0
78
AI Basics and Neural Networks Introduction
Cheesecake Labs
October 31, 2017
Tweet
Share
More Decks by Cheesecake Labs
See All by Cheesecake Labs
Cats' wellness & care
cheesecakelabs
0
55
How do we create the first impressions?
cheesecakelabs
0
60
Menstrual cup: suit and freedom
cheesecakelabs
0
78
Life is a cycle, better with a bicycle
cheesecakelabs
0
63
Interview Process: how to get the best of people
cheesecakelabs
1
94
My capsule wardrobe experience
cheesecakelabs
3
70
Stonewall Rebellion and its impact on LGBTQIA+ history
cheesecakelabs
1
48
Pregnancy, childbirth and breastfeeding: What do I have to do with it?
cheesecakelabs
0
51
MBTI - Psychological types described by Jung
cheesecakelabs
0
140
Other Decks in Technology
See All in Technology
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
410
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
2
480
Fashion×AI「似合う」を届けるためのWEARのAI戦略
zozotech
PRO
2
890
生成AIを利用するだけでなく、投資できる組織へ / Becoming an Organization That Invests in GenAI
kaminashi
0
110
AI駆動開発の実践とその未来
eltociear
1
330
【U/Day Tokyo 2025】Cygames流 最新スマートフォンゲームの技術設計 〜『Shadowverse: Worlds Beyond』におけるアーキテクチャ再設計の挑戦~
cygames
PRO
2
840
MariaDB Connector/C のcaching_sha2_passwordプラグインの仕様について
boro1234
0
920
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
1
700
障害対応訓練、その前に
coconala_engineer
0
130
Snowflakeでデータ基盤を もう一度作り直すなら / rebuilding-data-platform-with-snowflake
pei0804
6
1.6k
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
4
1.1k
エンジニアリングをやめたくないので問い続ける
estie
2
1.2k
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
110
エンジニアに許された特別な時間の終わり
watany
105
220k
Exploring anti-patterns in Rails
aemeredith
2
200
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
180
Google's AI Overviews - The New Search
badams
0
860
Fireside Chat
paigeccino
41
3.7k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
63
35k
Designing for humans not robots
tammielis
254
26k
Marketing to machines
jonoalderson
1
4.3k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
180
Transcript
Artificial Intelligence Basics and Neural Networks Introduction Frederico Jordan
What is Artificial Intelligence (AI)?
AI in Popular Culture
AI Effect "AI is whatever hasn't been done yet." Douglas
Hofstadter "Every time we figure out a piece of it, it stops being magical; we say, 'Oh, that's just a computation.'" Rodney Brooks
Types of Artificial Intelligence
Weak AI (Narrow AI) Non-sentient machine intelligence, typically focused on
a narrow task.
Strong AI Hypothetical Sentient machine (with consciousness, sentience and mind).
Strong AI Hypothetical Sentient machine (with consciousness, sentience and mind).
Artificial general intelligence (AGI): Machine with the ability to apply intelligence to any problem, rather than just one specific problem "At least as smart as a typical human".
Superintelligence Hypothetical Artificial intelligence far surpassing that of the brightest
and most gifted human minds.
Artificial Intelligence Branches • Machine learning ◦ Neural networks ▪
Perceptron ▪ Recurrent neural network ▪ Convoluted neural network ◦ Support Vector Machines (SVM) • Fuzzy systems • Evolutionary algorithms ◦ Genetic algorithm ◦ Differential evolution • Swarm Intelligence • Probabilistic methods
Neural Networks What is this ?
Neural Networks Uses
OK, but what are they?
Let’s get TECHNICAL!
Perceptrons
Perceptrons • (-2) and (-2) – Weights (W) • 3
– Bias/Threshold (b)
Perceptrons
Perceptrons • x 1 – Is it raining? • x
2 – Does your girlfriend/boyfriend want to go? • x 3 – Is it near public transportation?
Perceptrons
Neural Networks Finally!
Perceptrons
Neural Networks
How do they learn?
Real World Problem!
Recognizing Handwritten Digits
Database The MNIST (Modified National Institute of Standards and Technology)
database Contains 60,000 training images and 10,000 testing images.
Neural Network Architecture
Measuring Outcome! Cost Function
Neural Network Architecture
Neural Network Architecture
Cost Function
Neural Networks
Learning
Gradient Descent
Cost Function
Gradient Descent
Gradient Descent
Bonus github.com/fredericojordan/neural playground.tensorflow.org
Acknowledgements NeuralNetworksAndDeepLearning.com Michael Nielsen
Thank you!