constraints. • If {σ, τ} ∈ E, then σ ≺ τ or τ ≺ σ. It thus suffices to define N≺ G (τ) := {σ ∈ Mτ | {σ, τ} ∈ E} for each τ ∈ Σ. • For all τ ∈ Σ and k ∈ N, there is at most one σ ∈ N≺ G (τ) such that fτ (σ) = k. • For all τ ∈ Σ and σ ∈ N≺ G (τ), if fτ (σ) = k, then, for all j ≤ k, we have tp(Cσ[Ij ], Cτ [Ij ]) = tnj sj . Constructing E: For each τ ∈ Σ and each k ∈ N, ask whether there is σ ∈ Mτ ∩ Σ such that fτ (σ) = k and tp(Cσ[Ij ], Cτ [Ij ]) = tnj sj for all j ≤ k. If the answer is “yes”, then choose one such σ and put {σ, τ} in E. If the answer is “no”, then do nothing for this pair (τ, k).