Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Terraform定義もAIで自動作成してみた!インフラ構築でどれだけ生成AIが使えるの?
Search
ディップ株式会社
PRO
September 29, 2025
Technology
0
33
Terraform定義も AIで自動作成してみた!インフラ構築でどれだけ生成AIが使えるの?
ディップ株式会社
PRO
September 29, 2025
Tweet
Share
More Decks by ディップ株式会社
See All by ディップ株式会社
Unit-Level_Models_and_Discrete_Demand.pdf
dip_tech
PRO
0
2
Model_Choice_and_Decision_Theory.pdf
dip_tech
PRO
0
2
Gaussian_Process_Models.pdf
dip_tech
PRO
0
2
Dirichlet_Process_Models.pdf
dip_tech
PRO
0
3
HIERARCHICAL MODELS for HETEROGENOUS UNITS(前編)
dip_tech
PRO
0
1
HIERARCHICAL MODELS for HETEROGENOUS UNITS(後編)
dip_tech
PRO
0
2
AI-DLC
dip_tech
PRO
0
14
dipAIを支えるLLM・検索技術
dip_tech
PRO
0
65
ホールインワン開発の夢と現実〜AIコーディングの生産性最大化への道〜
dip_tech
PRO
0
11
Other Decks in Technology
See All in Technology
【SORACOM UG Explorer 2025】さらなる10年へ ~ SORACOM MVC 発表
soracom
PRO
0
150
あなたの知らない Linuxカーネル脆弱性の世界
recruitengineers
PRO
3
160
組織全員で向き合うAI Readyなデータ利活用
gappy50
1
500
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
0
320
クラウドとリアルの融合により、製造業はどう変わるのか?〜クラスメソッドの製造業への取組と共に〜
hamadakoji
0
430
IoTLT@ストラタシスジャパン_20251021
norioikedo
0
140
20251027_findyさん_音声エージェントLT
almondo_event
2
440
ソースを読む時の思考プロセスの例-MkDocs
sat
PRO
1
180
会社を支える Pythonという言語戦略 ~なぜPythonを主要言語にしているのか?~
curekoshimizu
3
730
SRE × マネジメントレイヤーが挑戦した組織・会社のオブザーバビリティ改革 ― ビジネス価値と信頼性を両立するリアルな挑戦
coconala_engineer
0
260
現場の壁を乗り越えて、 「計装注入」が拓く オブザーバビリティ / Beyond the Field Barriers: Instrumentation Injection and the Future of Observability
aoto
PRO
1
600
可観測性は開発環境から、開発環境にもオブザーバビリティ導入のススメ
layerx
PRO
0
370
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Side Projects
sachag
455
43k
The Language of Interfaces
destraynor
162
25k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
How STYLIGHT went responsive
nonsquared
100
5.9k
The Invisible Side of Design
smashingmag
302
51k
Unsuck your backbone
ammeep
671
58k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Transcript
ディップ株式会社 プラットフォーム部 SRE・AI2課 藤井 貴昭 Terraform定義も AIで自動作成してみた! 2025/9/11 発表
自己紹介 藤井 貴昭 ディップ株式会社 ソリューション開発本部 プラットフォーム部 SRE‧AI 2課 面接コボット、スポットバイトル など
自社プロダクト の インフラチーム リーダー 設計、構築、運用を担当 AWSとGCPの両方を使っています
今日お話すること 1. インフラ構築と生成AI 2. Terraform(Terragrunt)の紹介 3. なぜCursorを選んだのか? 4. Terraformで使ってみた 5.
他の用途にも使ってみました 6. まとめ 今回は実際にやってみた経験談を共有します ツールの比較・検証はやっていないので、主観的な結果なのはご了承ください
インフラ構築と生成AI アプリ開発で、AIを利用したプログラミングは、一般的になりつつある 一方インフラでAIを使った自動コード生成は、利用率はまだ高くはない インフラでの”コーディング”の特徴 同じような構成になることも多く、似たIaCのコードになりやすい IaCで、本番・開発など環境別のパラメーター設計にはコツが必要 調べる関連のドキュメントの数が多い
運用系のShell、CI/CDのコードも作成する インフラでも、生成AIを利用すれば“生産性”を挙げられるはず!
Terraform(Terragrunt)の紹介 Terraform HashiCorp製のIaCツール HCLでインフラを宣言的に定義 PGではなく、“設定“ 対応範囲が広く、汎用性が高い 主要なクラウドだけでなく、 監視ツールもIaC化できる
Terragrunt Terraformのラッパー 少ない記述で、環境・レイヤー別の 設定を効率的に管理できる DRY原則を実現 依存関係管理を簡素化 Terraformは、IaCのツールとして一般的だが Terragruntは、まだ一部の人が使っている状況
1.なぜCursorを選んだのか? 選定理由 使用する生成AIのモデルを選択できる Terraform(Terragrunt)での精度が悪い場合には、違うモデルに変えたい モデルの進歩は早いので、トレンドが変わる可能性も考慮したい 基本ルールの設定と関連ドキュメントの参照をさせたい
情報量の少ないTerragruntでも、精度が高くなるはず ぞれぐらいの精度が出るのかを確かめながら進めたい 対話形式で、指示・結果確認のサイクルを細かく回したい
2.Terraformで使ってみた ①設定 CursorでTerraformを使うために設定したこと Ruleファイル(mdc)を設定 GitHubで公開されているTerraformルールを採用 https://github.com/sanjeed5/awesome-cursor-rules-mdc/blob/main/rules-mdc/terraform.mdc 1. 英語から日本語化する 2.
カスタマイズ Terragrunt向けに変更 我々独自ルールを追加 3. Cursorプロジェクトに追加 メンバーで同じルールを適用設
2.Terraformで使ってみた ①設定 MCP Tools HashiCorp Terraform MCP Server(hashicorp/terraform-mcp-server)
AWS Terraform MCP Server(awslabs.terraform-mcp-server) Docs Webで公開されている公式ドキュメントを参照させる Terragrunt 公式ドキュメント OpenAPI(旧Swagger)公式ドキュメント その他(Tavern) 使用するモデルは「claude-4-sonet」を固定で指定(Autoから変更) ChatGPT-5も一時的に試してみたりしてみた
3.Terraformで使ってみた ②結果 AWSの新規プロダクト構築で利用してみた ゼロから新規でTerraform定義を作成させることは試さなかった アーキテクチャーやパラメーター化を正確に指示する方法のに時間がかかるというのが理由 精度が高く、効率が上がったポイント 部品の追加 途中まで作成した定義にリソースを追加してもらう 作成済の定義を参考にして追加してくれるので、安心して任せられる精度だった
リファクタリング 方法1)Agentから変更を指示 方法2)サジェスト機能を活用し、変更後の定義を提案してくれる パラメーターの変更が変更で大活躍 直前の変更内容を理解し、一回にブロック単位で提案してくれる
3.Terraformで使ってみた ②結果 精度が出なかったポイント Terragrunt固有の定義を正しく認識できていない部分があった 情報量の少なさが影響していると思われる 構成によって出来ないパターンを指示した場合 「設定不可」と回答してくれず、とりあえず定義を作成してしまう PlanやApply時のエラーで気がつく
StepFunctions ワークフロー定義の変更は、いまいち Applyはできるがレベルだが、 既存のロジックが消えたり、無駄なロジックが追加されてしまった terraform { source = “../../../..//modules/5-xxxx" } Terragrunt固有の記述 ミスと認識し 修正しようとする
4.他の用途にも使ってみました APIのサンプルデータから、 API Gateway フォーマットチェック用モデルの JsonSchema 定義を作成 API Gatewayが対応するJsonSchemaは、古いバージョンの仕様でドキュメントが少なく
困っていたが、 指示したら解決してくれた JsonSchema 定義から OpenAPI 定義の作成 単純なフォーマットの書換で、時間を短縮できた Shellスクリプトの各種Toolを作成 Shell(bash)は要求通り動作可能なほぼ完璧なものができた。”枯れている”ものは強い 指示しなくても、ログの出力までやってくれた
5.まとめ Terraform定義作成でも、AIで生産性を向上できる Terragruntでも使えるレベル。Claud-4-sonnet で十分な精度だった 間違いもあるので、人がちゃんと確認する テストはしっかりやりましょう 答えがわからない場合は、先に依頼してみるのもあり
未経験のツールでは先に作らせて、結果をみて後から理解するのもあり 今後も、いろいろ試しながら、積極的に使っていきます!
ご清聴ありがとうございました Geminiに作成した 「生成AIを駆使してTerraform定義を作成す るエンジニア」のイラストです