Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Lecture course "Integrated Nanophotonics" by Dmitry Fedyanin

DmitryFedyanin
October 19, 2017

Lecture course "Integrated Nanophotonics" by Dmitry Fedyanin

Lecture 5: Guiding Light (Part 2)

DmitryFedyanin

October 19, 2017
Tweet

More Decks by DmitryFedyanin

Other Decks in Education

Transcript

  1. 2 WHERE DID WE STOP? TM wave TE wave e−4

    κ 1 a= κ 1 +κ 2 κ 1 −κ 2 κ 1 +κ 3 κ 1 −κ 3 e−4 κ1 a= κ 1 ε 2 +κ 2 ε 1 κ 1 ε 2 −κ 2 ε 1 κ 1 ε 3 +κ 3 ε 1 κ 1 ε 3 −κ 3 ε 1 κ1 = √β2−(ω c )2 ε1 κ2 = √β2−(ω c )2 ε2 κ 3 = √β2−(ω c )2 ε 3
  2. 3 DISPERSION RELATION TE wave ε 2 =ε 3 Symmetric

    structure tanh(κ 1 a)=− κ 2 ε 1 κ 1 ε 2 tanh(κ 1 a)=− κ 1 ε 2 κ 2 ε 1 tanh(κ 1 a)=− κ 2 κ 1 tanh(κ 1 a)=− κ 1 κ 2 e−4 κ 1 a= κ 1 +κ 2 κ 1 −κ 2 κ 1 +κ 3 κ 1 −κ 3 TM wave e−4 κ1 a= κ 1 ε 2 +κ 2 ε 1 κ 1 ε 2 −κ 2 ε 1 κ 1 ε 3 +κ 3 ε 1 κ 1 ε 3 −κ 3 ε 1
  3. 5 DISPERSION RELATION Different approach β=k n 1 sinθ, sin

    θ >sin θ TIR ≥ n 2 n 1 , n 3 n 1 Phase shift due to reflection at the interfaces (Goos- Hanchen effect) Dispersion relation 4 k n 1 a cosθ −ϕ 12 −ϕ 13 =2 π N , N=0,1,2,3,...
  4. 6 RADIATION MODES if β < ω c n 2

    (θ<θTIR ), then κ2 2=β2−(ω c )2 n 2 2 < 0
  5. 7 RADIATION MODES if β < ω c n 2

    (θ<θTIR ), then κ2 2=β2−(ω c )2 n 2 2 < 0 Important: all modes, both guided and radiation, are orthogonal to each other.
  6. 8 RADIATION MODES if β < ω c n 2

    (θ<θTIR ), then κ2 2=β2−(ω c )2 n 2 2 < 0 Important: all modes, both guided and radiation, are orthogonal to each other. For details see D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, 1974. ∫ WG CS [E t i H t j * ]ds=0, i≠ j ! Mode normalization ! Guided Radiation c 8π ∫ WG CS [E t i H t j * ]ds=δ i j i , j=0,1,2,3,... c 8π ∫ WG CS [E ti H t j * ]ds=δ(i− j) i≡κ2 (βi ) , j≡κ2 (β j ) ! attention !
  7. 9 SOLUTION OF THE DISPERSION RELATION TM modes residual=e−4 κ1

    a− κ 1 ε 2 +κ 2 ε 1 κ 1 ε 2 −κ 2 ε 1 κ 1 ε 3 +κ 3 ε 1 κ 1 ε 3 −κ 3 ε 1 β =k n 1 sinθ, sinθ > n 2 n 1 n 1 =3; n 2 =1.4 ;2a=300 nm λ 1 =1550 nm; ω=1.216×1015s−1
  8. 10 SOLUTION OF THE DISPERSION RELATION β =k n 1

    sin θ, sinθ > n 2 n 1 n 1 =3; n 2 =1.4 ;2a=300 nm TM modes residual=e−4 κ1 a− κ 1 ε 2 +κ 2 ε 1 κ 1 ε 2 −κ 2 ε 1 κ 1 ε 3 +κ 3 ε 1 κ 1 ε 3 −κ 3 ε 1 λ 1 =1550 nm; ω=1.216×1015 s−1
  9. 11 SOLUTION OF THE DISPERSION RELATION TM modes residual=e−4 κ1

    a− κ 1 ε 2 +κ 2 ε 1 κ 1 ε 2 −κ 2 ε 1 κ 1 ε 3 +κ 3 ε 1 κ 1 ε 3 −κ 3 ε 1 β =k n 1 sinθ, sinθ > n 2 n 1 n 1 =3; n 2 =1.4 ;2a=300 nm λ 1 =1550 nm; ω=1.216×1015s−1
  10. 12 SOLUTION OF THE DISPERSION RELATION TM modes residual=e−4 κ1

    a− κ 1 ε 2 +κ 2 ε 1 κ 1 ε 2 −κ 2 ε 1 κ 1 ε 3 +κ 3 ε 1 κ 1 ε 3 −κ 3 ε 1 β =k n 1 sinθ, sinθ > n 2 n 1 n 1 =3; n 2 =1.4 ;2a=300 nm λ 1 =1550 nm; ω=1.216×1015s−1
  11. 13 SOLUTION OF THE DISPERSION RELATION β =k n 1

    sinθ, sinθ > n 2 n 1 n 1 =3; n 2 =1.4 ;2a=300 nm λ 1 =1550 nm; ω=1.216×1015s−1
  12. 14 SOLUTION OF THE DISPERSION RELATION λ 2 =650nm; ω=2.9×1015

    s−1 TM modes β =k n 1 sinθ, sinθ > n 2 n 1 n 1 =3; n 2 =1.4 ;2a=300 nm
  13. 15 SOLUTION OF THE DISPERSION RELATION TM modes λ 2

    =650nm; ω=2.9×1015 s−1 β =k n 1 sinθ, sinθ > n 2 n 1 n 1 =3; n 2 =1.4 ;2a=300 nm
  14. 16 SOLUTION OF THE DISPERSION RELATION β =k n 1

    sin θ, sinθ > n 2 n 1 n 1 =3; n 2 =1.4 ; 2a=300 nm TM modes β=ω c n 2 β=ω c n 1
  15. 17 SOLUTION OF THE DISPERSION RELATION TE modes β=ω c

    n 2 β=ω c n 1 β =k n 1 sinθ, sinθ > n 2 n 1 n 1 =3; n 2 =1.4 ; 2a=300 nm
  16. 18 SOLUTION OF THE DISPERSION RELATION β=ω c n 2

    β=ω c n 1 TE and TM modes β =k n 1 sinθ, sinθ > n 2 n 1 n 1 =3; n 2 =1.4 ; 2a=300 nm
  17. 19 MODE PROPERTIES TM modes β=ω c n 2 β=ω

    c n 1 cutoff frequencies β =k n 1 sinθ, sinθ > n 2 n 1 n 1 =3; n 2 =1.4 ; 2a=300 nm
  18. 20 MODE PROPERTIES β=ω c n 2 β=ω c n

    1 1 κ 2 = 1 √β2−(ω c )2 n 2 2 penetration depth of the mode into the cladding
  19. 21 MODE PROPERTIES M S = 1 2 κ2 +2a+

    1 2κ2 =2a+ 1 √β 2−(ω c )2 n 2 2 We can introduce an effective mode size
  20. 22 MODE PROPERTIES M S = 1 2 κ2 +2a+

    1 2κ2 =2a+ 1 √β 2−(ω c )2 n 2 2 We can introduce an effective mode size Other possible metrics: M= ( ∬ WG CS W (x , y)dxdy)2 ∬ WG CS (W (x , y))2 dxdy M= 1 max(W (x , y)) ∬ WG CS W (x , y)dxdy More information in R.F. Oulton, G. Bartal, D.F.P. Pile, X. Zhang, Confinement and propagation characteristics of subwavelength plasmonic modes, New Journal of Physics 10, 105018 (2008)
  21. 23 MODE PROPERTIES light wavelength in the cladding normalized core

    size M S = 1 2 κ2 +2a+ 1 2κ2 =2a+ 1 √β 2−(ω c )2 n 2 2 We can introduce an effective mode size
  22. 24 MODE PROPERTIES 0 1 2 3 4 0 1

    2 3 M S = 1 2 κ2 +2a+ 1 2κ2 =2a+ 1 √β 2−(ω c )2 n 2 2 We can introduce an effective mode size
  23. 27 SINGLE-MODE WAVEGUIDE In fact, in this region, there is

    one TM mode and one TE mode, but the possible cross coupling between them is minimal, since the vectors of the electromagnetic field of these modes in every point are orthogonal to each other.
  24. 28 SINGLE-MODE WAVEGUIDE In fact, in this region, there is

    one TM mode and one TE mode, but the possible cross coupling between them is minimal, since the vector of the electromagnetic field of these modes in every point are orthogonal to each other. Reminder: In a simple plasmonic waveguide, only one mode exists.
  25. 37 NEXT CLASS Resonators, filters and modulators. Homework: Т. Тамир,

    Интегральная оптика. — М.: Мир, 1978. T. Tamir, Integrated Optics, Springer, 1975. Chapter 2: Sections 2.1 – 2.5