Upgrade to Pro — share decks privately, control downloads, hide ads and more …

[FUN Open Campus 2025] 何でもセンシングしていいですか?

[FUN Open Campus 2025] 何でもセンシングしていいですか?

Presented in FUN Open Campus, 函館, Aug 3, 2025

石田 繁巳
何でもセンシングしていいですか?
公立はこだて未来大学 オープンキャンパス2025 模擬授業

https://www.fun.ac.jp/open-campus2025

Avatar for Shigemi ISHIDA

Shigemi ISHIDA

August 03, 2025
Tweet

More Decks by Shigemi ISHIDA

Other Decks in Education

Transcript

  1. Aug 3, 2025 FUN 2025 n o (=IoT ) o

    ( ) § ( ) 2 1 IoT 19 Livingroom Bedroom Bath- room Wash- room Dining/Kitchen Nature Remo Switchbot Switchbot Hub Echo Flex Echo Flex Smart power strip
  2. Aug 3, 2025 FUN 2025 n ( ) IoT ※

    IoT( ) 20 TV 4 ( ) ( OFF)
  3. Aug 3, 2025 FUN 2025 22 IoT 【第1章】 IoTの基礎知識 IoTとは何か?

    ~IoTのイメージをつかもう!~ IoTとはInternet of Thingsの略で、直訳すると「モノのインターネット」という意味です。 IoTでは、農地や工場、商店など現実世界にある様々なモノに関するデータをセンサーなどで 1. IoTとは IoT(Internet of Things)とは、現実世界の様々なモノがインターネットとつながることである。 モノの世界で収集したデータが、通信によりインターネット空間に送信・蓄積され、 データを分析・活用することで新たな価値の創出につながる。 インターネット空間 現実世界(モノ) IoT データ 収集 データ 活用 データ送信(通信) データ 蓄積 データ 分析 商店 自動車 農地 家 工場 在庫 気温 生産 売上 湿度 進捗 配送 位置 電力 消費 健康 状態 サーバ クラウド データベース
  4. Aug 3, 2025 FUN 2025 23 IoT 【第2章】 IoTの技術・関連法制度 もっと知りたいIoT

    ~IoTの技術を知ろう~ 2. データ収集 IoTでは様々なセンサーによりデータの収集を行う。 画像を取得するセンサー 温度、湿度などを読み取るセンサー モノの有無、形状、位置などを 読み取るセンサー IoTでデータの収集を行う手段の一つがセンサーです。 センサーから収集したデータを様々な通信方式でクラウドやデータベースに送信します。 ひずみを検知するセンサー 加速度、回転数などを 読み取るセンサー タグを読み取るセンサー
  5. Aug 3, 2025 FUN 2025 n o 2019 1. 2.

    3. 4. 5. 6. 7. 8. IoT 24
  6. Aug 3, 2025 FUN 2025 26 n WiSee [pu 13]

    o 9 § o 94% [pu 13] Whole-home gesture recognition using wireless signals, ACM MobiCom. : WiFi rithm in more detail and show how to make it applicable to existing 802.11 frames. (b) How can we deal with other humans in the environment? A typical home may have multiple people who can affect the wireless signals at the same time. WiSee uses the MIMO capability that is inherent to 802.11n, to focus on gestures from a particular user. MIMO provides throughput gains by enabling multiple transmitters to concurrently send packets to a MIMO receiver. If we consider the wireless reflections from each human as signals from a wireless transmitter, then they can be separated using a MIMO receiver. Traditional MIMO decoding, however, relies on estimating the channel between the transmitter and receiver antennas. These channels are typically estimated by sending a distinct known preamble from each transmitter. Such a known signal structure is not available in our system since the human body reflects the same 802.11 transmitter’s signals. Our solution to this problem is inspired by the trigger approach taken by many multi-user games that use Xbox Kinect, in which a user gains control of the interface by performing a specific gesture pattern. In WiSee the target human performs a repetitive gesture, which we use as that person’s preamble. A WiSee receiver leverages this preamble to estimate the MIMO channel that maximizes the energy of the reflections from the user. Once the receiver locks on to this channel, the user performs normal (non-repetitive) gestures that the receiver classifies using the Doppler shifts. In §3.3, we explore this idea further and show how to ex- tract the preamble without requiring the human to perform gestures at a pre-determined speed. The WiSee proof-of-concept is implemented in GNURadio using the USRP-N210 hardware. We classify the gestures from the Doppler shifts using a simple pattern-matching Figure 1—Gesture sketches: WiSee can detect and clas- sify these nine gestures in line-of-sight, non-line-of-sight, and through-the-wall scenarios with an average accuracy of 94%. gestures. However, the classification accuracy reduces as we further increase the number of interfering users. This is a limitation of WiSee: Given a fixed number of trans- mitters and receiver antennas, the accuracy reduces with the number of users. However, since typical home scenar- 9 [pu 13] Figure 8—Scenario layouts. (c) LOS-txrxfar: Here a receiver and a transmitter are placed 19.7 feet away from each other. The user performs gestures in line-of-sight to the receiver. (d) Through-the-Wall: Here a receiver and a transmitter are placed next to each other close to a wall. The user performs gestures in the room adjacent to the wall. (e) Through-the-Corridor: Here a receiver and a transmitter gesture in the direction of the device she wants to control. We compute the average Doppler SNR at each location by having each user repeat the gesture ten times. Results: Figs. 9(a)-(f) plot the average Doppler SNR as a function of distance, for the six scenarios. The plots show the results for different number of antennas at the receiver. They show the following: (a) Versus distance: In scenarios (a), (b), (d), and (e), as the distance between the user and the receiver increases, the average Doppler SNR reduces. This is expected because the strength of the signal reflections from the human body reduces with distance. However, the received Doppler SNR is still about 3 dB at 12 feet, which is sufficient to identify gestures. In scenarios (c) and (f), however, the Doppler SNR does not significantly reduce with the distance from the re- ceiver. This is because in both these scenarios, as the user moves away from the receiver, she gets closer to the trans- mitter. Thus, while the human reflections get weaker as the user moves away from the receiver; since the user moves closer to the transmitter, the transmitted signals arrive at the user with a higher power, thus, increasing the energy in the reflected signals. As a result, the Doppler SNR is as high as 15 dB at distances of about 25 feet. [pu 13]
  7. Aug 3, 2025 FUN 2025 27 n E-eyes [wang 14],

    CRAM [wang 15] o n Smokey [zheng 16] o n SignFi [ma 18], WiKey [ali 15] o n ART [wei 15] o WiFi [wang 14] E-eyes: In-home device-free activity identification using fine-grained WiFi signatures, ACM MobiCom. [wang 15] Understanding and modeling of WiFi signal based human activity recognition, ACM MobiCom. [zheng 16] Smokey: Ubiquitous smoking detection with commercial WiFi infrastructures, IEEE INFOCOM. [ma 18] SignFi: sign language recognition using WiFi, ACM IMWUT. [ali 15] Keystroke recognition using WiFi signals, ACM MobiCom. [wei 15] Acoustic eavesdropping through wireless vibrometry, ACM MobiCom. WiFi
  8. Aug 3, 2025 FUN 2025 29 [hayashi 21] Distinguishing working

    state by palm orientation, IEEE LifeTech
  9. Aug 3, 2025 FUN 2025 30 1 ❓ : F

    0.8 X軸 pitch Y軸 Z軸 roll ±0 -90 ±180 90 ±0 -90 ±180 90
  10. Aug 3, 2025 FUN 2025 31 n o 7 50

    [JRC 20] o [ 20] n o o → [JRC'20] 2020 https://www.jpc-net.jp/research/list/comparison.html [ '20] : , IIR
  11. Aug 3, 2025 FUN 2025 n o 3 o §

    X (roll ) § Y (pitch ) o § : 1 : 0 § 𝑛 →𝑛 34 きラベ生真特 徴量ベ生真特 抽ブック教 きラ 師あり力ンブサタ 角ンブサタ算出 閾値を用いて 掌の向きラベッ生教 真値 特徴量抽出ブ生ック 教師あり徴量ブ生ック 出力 師あり力ン真ンサ 角ンブサタ 掌の向きラベッ X軸 pitch Y軸 Z軸 roll ±0 -90 ±180 90 ±0 -90 ±180 90
  12. Aug 3, 2025 FUN 2025 n o o Z n

    : 10Hz n 𝑛: 10 n : 2 ( ) 35 F 10 CV 0.940 0.938 0.939 LOPO CV 0.933 0.924 0.927
  13. Aug 3, 2025 FUN 2025 n o o Z n

    : 10Hz 1Hz n 𝑛: 10 n : 2 ( ) 36 F 10 CV 0.929 0.926 0.926 LOPO CV 0.935 0.926 0.929
  14. Aug 3, 2025 FUN 2025 37 [ishida 24] User identification

    via touch-screen button operation for smart home, Sensors and Materials, 36(10) [suda 23] User estimation with touch panel buttons toward in- home activity recognition, ICMU
  15. Aug 3, 2025 FUN 2025 38 1 82.3% ? •

    • → • • • • • • A B C or or 93.5%
  16. Aug 3, 2025 FUN 2025 n 1. § Ø 2.

    § Ø 40 ಈ͖ΛಡΈऔΓ εϥΠυ ճస Ϙλϯ
  17. Aug 3, 2025 FUN 2025 41 ᶃ σʔλऩूɾಛ௃ྔநग़ ᶄ ϢʔβਪఆɾϞσϧͷֶश

    F1 0.021 F2 0.135 F3 0.789 ~~ ~~~ Time Position Pressure X Y 0 485 305 0 0.001 485 309 0.21653 ~~~~ ~~~ ~~~ ~~~~~~~ 1.201 482 300 0 ਪఆ݁Ռ
  18. Aug 3, 2025 FUN 2025 n o § Apple iPhone7

    § Web § 85cm o § 20 n 1. § § § 2. : 100 42
  19. Aug 3, 2025 FUN 2025 n o 43 x, y

    2 x, y 2 6 1 2 1 1 0.1 11 1 1
  20. Aug 3, 2025 FUN 2025 44 n : 100 (

    90, 10) / n : 90% [pohl 15] → → [pohl 15] One-button recognizer: exploiting button pressing behavior for user differentiation, ACM UbiComp : ( ) + (13) + (17) (28) 84.1 92.5 92.6 85.9 93.1 94.6
  21. Aug 3, 2025 FUN 2025 45 [joya 23] Design of

    room-layout estimator using smart speaker, EAI MobiQuitous
  22. Aug 3, 2025 FUN 2025 46 1 ・ 製品の設置場所の事前 登録

    ・ 場所を明確にした命令 電気を 消して どの電気? スマートスピーカ 寝室 リビング キッチン スマートスピーカ:連携製品の設置部屋設定&明示的な指示が必要 間取りを推定 部屋方向を正解率0.85で,部屋種別を正解率0.71で推定 解決したい課題 提案手法 ! 部屋の種別 + 間取り ! 声の方向からユーザ位置推定 = + = ・ 推定した間取り に基づいて操作 対象機器を決定 方向推定結果の揺らぎを利用            部屋の方向
  23. Aug 3, 2025 FUN 2025 n o § → 47

              
  24. Aug 3, 2025 FUN 2025 1. (4 ) 2. Sound

    Density Map (SDM) o 3. o 4. o 5. 48 Sound Mapper Data Segmentation Clustering Room Type Estimation Steering Vector Sound Data Sound Density Map Room Angle Room Type 1 2 3 4 5
  25. Aug 3, 2025 FUN 2025 1. (4 ) 2. Sound

    Density Map (SDM) o 3. o 4. o 5. 49 Sound Mapper Data Segmentation Clustering Room Type Estimation Steering Vector Sound Data Sound Density Map Room Angle Room Type 1 2 3 4 5
  26. Aug 3, 2025 FUN 2025 50 n MUSIC [schmidt 86]

    ⾳源⽅向推定 [schmidt 86] Multiple emitter location and signal parameter estimation, Trans. Antennas Propag., 34(3). Sound Density Map (SDM) FFT Correlation Eigen Decomposition Steering Vector Sound Data Narrow-Band <latexit sha1_base64="efRuDYv9aGKtdcCs9eFFUDwJSWg=">AAACBnicZVBNS8NAEN34WeNX1GMvwVLwVJIi6rHQix6EiqYtNCFstpt26WYTdjdCCTl48594Ez2IV3+EF/+NmzaIbR8MPN6bYWZekFAipGX9aGvrG5tb25UdfXdv/+DQODruijjlCDsopjHvB1BgShh2JJEU9xOOYRRQ3Asm7cLvPWIuSMwe5DTBXgRHjIQEQakk36i6sbKL6azjuxGUYx5lt879TTvPfaNmNawZzFVil6QGSnR849sdxiiNMJOIQiEGtpVIL4NcEkRxrtfdVOAEogkc4YGiDEZYeNnsi9ysK2VohjFXxaQ5U/V/ExmMhJhGgeos7hTLXiH+eYurZHjlZYQlqcQMzTeFKTVlbBaZmEPCMZJ0qghEnKhrTTSGHCKpktNVDPby06uk22zYF43m3XmtZZWBVEAVnIIzYINL0ALXoAMcgMATeAFv4F171l61D+1z3rqmlTMnYAHa1y9DoZjJ</latexit> PMUSIC <latexit sha1_base64="JoupCU7DWhsNfSI3LnzQ4yWlQ58=">AAACAHicZVDNSsNAGNzUvxr/ouLJy2Ip1EtJiqjHQi96ECqattCGsNlu2qW7SdjdCCX04pt4Ez2IV5/Di2/jtg1i24GFYeb7+GYnSBiVyrZ/jMLa+sbmVnHb3Nnd2z+wDo9aMk4FJi6OWSw6AZKE0Yi4iipGOokgiAeMtINRY+q3n4iQNI4e1TghHkeDiIYUI6Ul3zpp+j2O1FDw7M59uG1MKqHvnPtWya7aM8BV4uSkBHI0feu7149xykmkMENSdh07UV6GhKKYkYlZ7qWSJAiP0IB0NY0QJ9LLZvknsKyVPgxjoV+k4Ew1/21kiEs55oGenGaVy95U/PMWT6nw2stolKSKRHh+KUwZVDGctgH7VBCs2FgThAXVaSEeIoGw0p2ZugZn+dOrpFWrOpfV2v1FqW7nhRTBKTgDFeCAK1AHN6AJXIBBBl7AG3g3no1X48P4nI8WjHznGCzA+PoF5j6VHA==</latexit> PMUSIC(f1) <latexit sha1_base64="td5vBxd1fIuZk86anZcdQyZPo64=">AAACAHicZVDNSsNAGNzUvxr/ouLJy2Ip1EtJiqjHQi96ECqattCGsNlu2qW7SdjdCCX04pt4Ez2IV5/Di2/jtg1i24GFYeb7+GYnSBiVyrZ/jMLa+sbmVnHb3Nnd2z+wDo9aMk4FJi6OWSw6AZKE0Yi4iipGOokgiAeMtINRY+q3n4iQNI4e1TghHkeDiIYUI6Ul3zpp+j2O1FDw7M59uG1MKqFfO/etkl21Z4CrxMlJCeRo+tZ3rx/jlJNIYYak7Dp2orwMCUUxIxOz3EslSRAeoQHpahohTqSXzfJPYFkrfRjGQr9IwZlq/tvIEJdyzAM9Oc0ql72p+OctnlLhtZfRKEkVifD8UpgyqGI4bQP2qSBYsbEmCAuq00I8RAJhpTszdQ3O8qdXSatWdS6rtfuLUt3OCymCU3AGKsABV6AObkATuACDDLyAN/BuPBuvxofxOR8tGPnOMViA8fUL58WVHQ==</latexit> PMUSIC(f2) … <latexit sha1_base64="/+Snuy+l7085NUCfV22dfL5VYck=">AAACAHicZVDLSsNAFJ3UV42vqLhyM1gKFaQkRdRlwY3LCvYBTSiT6aQdOnkwcyOU0I1/4k50IW79Djf+jZM2iLUHBg7n3Ms9c/xEcAW2/W2U1tY3NrfK2+bO7t7+gXV41FFxKilr01jEsucTxQSPWBs4CNZLJCOhL1jXn9zmfveRScXj6AGmCfNCMop4wCkBLQ2sEzckMPaDjMxqLowZkAscnA+sil2358CrxClIBRVoDawvdxjTNGQRUEGU6jt2Al5GJHAq2MysuqliCaETMmJ9TSMSMuVl8/wzXNXKEAex1C8CPFfNPxsZCZWahr6ezNOq/14u/nrLpyC48TIeJSmwiC4uBanAEOO8DTzkklEQU00IlVynxXRMJKGgOzN1Dc7/T6+STqPuXNUb95eVpl0UUkan6AzVkIOuURPdoRZqI4oy9Ixe0ZvxZLwY78bHYrRkFDvHaAnG5w9XQ5Vk</latexit> a(✓, f) <latexit sha1_base64="G66eZzL/Im+8JVIHqXdWzZD+4KI=">AAAB+3icZVDLSsNAFL3xWeMr6tLNYClUkJIUUZcFNy4r2Ae0oUymk3bo5MHMpFhC/sSd6ELc+idu/BsnbRDbHhg4nHMv98zxYs6ksu0fY2Nza3tnt7Rn7h8cHh1bJ6dtGSWC0BaJeCS6HpaUs5C2FFOcdmNBceBx2vEm97nfmVIhWRQ+qVlM3QCPQuYzgpWWBpbVD7Aae376nFX9K6QuB1bZrtlzoHXiFKQMBZoD67s/jEgS0FARjqXsOXas3BQLxQinmVnpJ5LGmEzwiPY0DXFApZvOo2eoopUh8iOhX6jQXDX/baQ4kHIWeHoyDypXvVz885ZPKf/OTVkYJ4qGZHHJTzhSEcqLQEMmKFF8pgkmgum0iIyxwETpukxdg7P66XXSrtecm1r98brcsItCSnAOF1AFB26hAQ/QhBYQmMILvMG7kRmvxofxuRjdMIqdM1iC8fULlDyTSw==</latexit> x(f, t) <latexit sha1_base64="0CB8+QoTUPZjS1c8h0NkTwrVJ2M=">AAAB9nicZVDLSsNAFL3xWeOr6tLNYCnUTUmKqMuCG5dV7APaUCbTSTt0MokzE7GEfoc70YW49WPc+DdO2iC2PTBwOOde7pnjx5wp7Tg/1tr6xubWdmHH3t3bPzgsHh23VJRIQpsk4pHs+FhRzgRtaqY57cSS4tDntO2PbzK//USlYpF40JOYeiEeChYwgrWRvF6I9cgP0vtpJTjvF0tO1ZkBrRI3JyXI0egXv3uDiCQhFZpwrFTXdWLtpVhqRjid2uVeomiMyRgPaddQgUOqvHSWeorKRhmgIJLmCY1mqv1vI8WhUpPQN5NZSrXsZeKft3hKB9deykScaCrI/FKQcKQjlHWABkxSovnEEEwkM2kRGWGJiTZN2aYGd/nTq6RVq7qX1drdRanu5IUU4BTOoAIuXEEdbqEBTSDwCC/wBu/Ws/VqfVif89E1K985gQVYX78+dJIW</latexit> R(f) <latexit sha1_base64="sfTp17xqs+gZl3DaBHMvJl+V+fc=">AAAB+nicZVDLSsNAFL3xWeOjUZdugqVQNyUpoi4LIrisYB/QhjCZTtqhk0mYmQgl9kvciS7ErZ/ixr9x0gax7YGBwzn3cs+cIGFUKsf5MTY2t7Z3dkt75v7B4VHZOj7pyDgVmLRxzGLRC5AkjHLSVlQx0ksEQVHASDeY3OZ+94kISWP+qKYJ8SI04jSkGCkt+VZ5ECE1DsLsbubzWnjhWxWn7sxhrxO3IBUo0PKt78EwxmlEuMIMSdl3nUR5GRKKYkZmZnWQSpIgPEEj0teUo4hIL5snn9lVrQztMBb6cWXPVfPfRoYiKadRoCfznHLVy8U/b/mUCm+8jPIkVYTjxaUwZbaK7bwHe0gFwYpNNUFYUJ3WxmMkEFa6LVPX4K5+ep10GnX3qt54uKw0naKQEpzBOdTAhWtowj20oA0YUniBN3g3no1X48P4XIxuGMXOKSzB+PoFL6uTGw==</latexit> En(f) <latexit sha1_base64="srK5AseOBeGGICoFciQAW47NHP8=">AAACAHicZVDNSsNAGNzUvxr/ouLJy2Ip1EtJiqjHQi96ECqattCWsNlu2qW7SdjdCCX04pt4Ez2IV5/Di2/jpg1i24GFYeb7+GbHjxmVyrZ/jMLa+sbmVnHb3Nnd2z+wDo9aMkoEJi6OWCQ6PpKE0ZC4iipGOrEgiPuMtP1xI/PbT0RIGoWPahKTPkfDkAYUI6Ulzzppej2O1Ejw9M59uG1MK4E3Pveskl21Z4CrxMlJCeRoetZ3bxDhhJNQYYak7Dp2rPopEopiRqZmuZdIEiM8RkPS1TREnMh+Oss/hWWtDGAQCf1CBWeq+W8jRVzKCff1ZJZVLnuZ+OctnlLBdT+lYZwoEuL5pSBhUEUwawMOqCBYsYkmCAuq00I8QgJhpTszdQ3O8qdXSatWdS6rtfuLUt3OCymCU3AGKsABV6AObkATuACDFLyAN/BuPBuvxofxOR8tGPnOMViA8fULPuOVVg==</latexit> PMUSIC(fk) Narrow-Band Narrow-Band Wide-Band Frequency Component Correlation Matirx Noise Eigen Vector <latexit sha1_base64="8DqL6w+rUUPnIyk5AKFSMFFWDwg=">AAAB6nicZVBNS8NAEJ3Urxq/qh69BEvBU0mKqMeCFy9CC/YD2lA220m7dLMJuxuhhP4Cb6IH8epP8uK/cdsGse2Dgcd7M8zMCxLOlHbdH6uwtb2zu1fctw8Oj45PSqdnbRWnkmKLxjyW3YAo5ExgSzPNsZtIJFHAsRNM7ud+5xmlYrF40tME/YiMBAsZJdpIzcdBqexW3QWcTeLlpAw5GoPSd38Y0zRCoSknSvU8N9F+RqRmlOPMrvRThQmhEzLCnqGCRKj8bHHpzKkYZeiEsTQltLNQ7X8TGYmUmkaB6YyIHqt1by7+eaurdHjnZ0wkqUZBl5vClDs6duZ/O0MmkWo+NYRQycy1Dh0TSag26dgmBm/96U3SrlW9m2qteV2uu3kgRbiAS7gCD26hDg/QgBZQQHiBN3i3uPVqfVify9aClc+cwwqsr1+Fio0c</latexit> M Microphones Sound Density Map (SDM) 時刻 パワー ⾓度 ⾓度 時刻 パワー
  27. Aug 3, 2025 FUN 2025 n n AZDEN SGM-990 4

    Behringer UMC404HD o 5cm 70cm o [email protected] 51      Kitchen Bedroom Living Room Washroom Bathroom Microphones 270cm 350cm 258cm 258cm 350cm 166cm ( 40 ×20) 1: A 2: B DS (10 ) (10 ) (10 ) (10 ) DS DS DS
  28. Aug 3, 2025 FUN 2025 n o ARI( ) n

    o : 52 Kitchen Bedroom Living Room Washroom Bathroom Microphones 270cm 350cm 258cm 258cm 350cm 166cm ARI DS 0.897 0.783 DS 0.327 0.683 DS 0.746 0.967 DS 0.925 0.967 全データ 0.725 0.850 3
  29. Aug 3, 2025 FUN 2025 n IoT o IoT n

    o n o n o : [email protected] o Web: https://pman0214.netlify.app/ 57