Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
にゃーんとわんわん
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Doarakko
December 11, 2020
Programming
0
1.2k
にゃーんとわんわん
Doarakko
December 11, 2020
Tweet
Share
More Decks by Doarakko
See All by Doarakko
Cloudflare Workers で X(Twitter)のボットを作ってみた
doarakko
0
290
Vercel Edge Functions を使って作る画像メーカー
doarakko
0
79
JOIN して1ヶ月のエンジニアに聞いた Liiga の良いところ 3 選
doarakko
0
83
わんわおーん
doarakko
0
68
職場を明るくする
doarakko
0
320
コードレビューの時間を削減しました
doarakko
0
98
仕事中に隠れてテレビ番組表を見るぞ
doarakko
0
200
GitHub Project の運用を自動化しました
doarakko
0
110
GitHub Actions に入門しました
doarakko
0
1.3k
Other Decks in Programming
See All in Programming
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
120
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
640
高速開発のためのコード整理術
sutetotanuki
1
390
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
610
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
680
ThorVG Viewer In VS Code
nors
0
770
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
300
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
160
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
20
7k
Featured
See All Featured
The Language of Interfaces
destraynor
162
26k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
140
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
180
ラッコキーワード サービス紹介資料
rakko
1
2.2M
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
How to Think Like a Performance Engineer
csswizardry
28
2.4k
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
640
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
64
Transcript
にゃーんとわんわん @Doarakko
・2019年12月入社(2社目) ・エンジニア歴1.5年 - 仕事: Go, PHP - 趣味: Python, C++
・AtCoder 緑 ・海外サッカーをよく見ます 自己紹介 2
3
4
Slackbot を使ってます 5 ・Slack 標準搭載のボット ・誰でも簡単に使える ・改行で区切るとランダムで返る ・画像 URL は展開される
手動追加面倒くさい & 文字数制限あり 6
Bot 作りました 7 ⚽ GitHub: https://github.com/Doarakko/iyashi
Heroku 全体の構成と流れ:画像投稿 8 bot ML model postgres ① ② ③
④ ⑤
Heroku 全体の構成と流れ:にゃーん 9 bot ML model postgres ① ② ③
④ にゃーん
使用したもの Slack Bot ・Heroku:Bot を動かしている場所 ・slackbot:Python で簡単に Slack Bot を作成するためのライブラリ
動物の画像認識モデル ・PyTorch:機械学習のライブラリ ・flickr API:動物画像の収集 ・Google Colab:モデル作成の作業場所 10
・超簡単に Slack Bot を作れる ・特定のメッセージに対して、送信・返信・絵文字をつけられる Python のライブラリ slackbot 11 https://github.com/lins05/slackbot
1. データ収集 2. 画像のノイズ除去 3. 前処理 4. 転移学習 5. モデル評価
モデル作成手順 12
flickr API を使って各動物 600 枚の画像を収集(合計 3,000 枚) モデル作成手順(1 / 5):データ収集
13 flickr: 写真共有サイト
モデル作成手順(2 / 5):画像のノイズ除去 14 今回はサボりました
モデル作成手順(3 / 5):前処理 15 今回行ったもの ・画像サイズをあわせる ・正規化 よく行うもの ・ 写真から顔を切り取る(for
顔認識モデル) ・オリジナルを回転した画像を生成(水増し) ・位置の補正
モデル作成手順(4 / 5):転移学習 16 過学習:模擬試験は 90 点だったけど本番は 30 点 ・学習済みモデルのパラメータをそのまま使用
・最終層以外のパラメータを学習させないため過学習を抑えられる ・クラス数にあわせて最終層を変更 https://www.youtube.com/watch?v=yv0SzIvIhGk
モデル作成手順(4 / 5):転移学習 17 ・ImageNet で学習させた ResNet-18 を使用 ・ResNet は最大
152 層(今回は一番小さいものを使用) PyTorch から簡単に学習済みのモデルを使えます https://www.researchgate.net/figure/Proposed-Mod ified-ResNet-18-architecture-for-Bangla-HCR-In-th e-diagram-conv-stands-for_fig1_323063171
モデル作成手順(5 / 5):モデル評価 18 ・合計 3,000 枚の画像をランダムに分ける(各クラスごとの画像枚数は均等に) - 学習用:2,000 枚
- バリデーション用:500 枚 - テスト用:500 枚 テスト用のデータに対して Accuracy 0.9820 各データは必ず独立させる(例:学習用とテスト用で同じデータを使わない)
1. データ収集 2. 画像のノイズ除去 3. 前処理 4. 転移学習 5. モデル評価
モデル作成手順(再掲) 19
ルールベース 1:80 % (仮) ・「ネコ」がほとんど(弊社)なので全て「ネコ」として判定 ルールベース 2:90 % (仮) ・A
さんは「イヌ」を飼っている → A さんから投稿された画像は全て「イヌ」として判定 ・B さんは「ネコ」と「イヌ」を飼っている → ランダムで判定 機械学習:98 % ・実装難易度、工数、スペシャリスト、運用コスト、 etc 機械学習本当に必要ですか? 20 本当に機械学習が必要なのか、他に方法がないかしっかりと考える必要がある
付録:誰でもどこでもコーディングフリーで with Heroku Button 21 JSON ファイルを書くだけで簡単にツールを配布可能 ⚽ https://github.com/Doarakko/iyashi
⚽ https://speakerdeck.com/8823scholar/herokuhasi-ndafalseka
にゃーんとわんわん @Doarakko