Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
にゃーんとわんわん
Search
Doarakko
December 11, 2020
Programming
0
1.1k
にゃーんとわんわん
Doarakko
December 11, 2020
Tweet
Share
More Decks by Doarakko
See All by Doarakko
Cloudflare Workers で X(Twitter)のボットを作ってみた
doarakko
0
180
Vercel Edge Functions を使って作る画像メーカー
doarakko
0
47
JOIN して1ヶ月のエンジニアに聞いた Liiga の良いところ 3 選
doarakko
0
78
わんわおーん
doarakko
0
66
職場を明るくする
doarakko
0
260
コードレビューの時間を削減しました
doarakko
0
89
仕事中に隠れてテレビ番組表を見るぞ
doarakko
0
140
GitHub Project の運用を自動化しました
doarakko
0
110
GitHub Actions に入門しました
doarakko
0
1.2k
Other Decks in Programming
See All in Programming
命名をリントする
chiroruxx
1
390
The rollercoaster of releasing an Android, iOS, and macOS app with Kotlin Multiplatform | droidcon Italy
prof18
0
150
return文におけるstd::moveについて
onihusube
1
860
Criando Commits Incríveis no Git
marcelgsantos
2
170
range over funcの使い道と非同期N+1リゾルバーの夢 / about a range over func
mackee
0
110
Webエンジニア主体のモバイルチームの 生産性を高く保つためにやったこと
igreenwood
0
330
テスト自動化失敗から再挑戦しチームにオーナーシップを委譲した話/STAC2024 macho
ma_cho29
1
1.3k
今からはじめるAndroidアプリ開発 2024 / DevFest 2024
star_zero
0
1k
競技プログラミングへのお誘い@阪大BOOSTセミナー
kotamanegi
0
350
Cloudflare MCP ServerでClaude Desktop からWeb APIを構築
kutakutat
1
530
ゆるやかにgolangci-lintのルールを強くする / Kyoto.go #56
utgwkk
1
360
わたしの星のままで一番星になる ~ 出産を機にSIerからEC事業会社に転職した話 ~
kimura_m_29
0
180
Featured
See All Featured
Faster Mobile Websites
deanohume
305
30k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Scaling GitHub
holman
458
140k
Designing Experiences People Love
moore
138
23k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
5
440
XXLCSS - How to scale CSS and keep your sanity
sugarenia
247
1.3M
Building a Scalable Design System with Sketch
lauravandoore
460
33k
Building Adaptive Systems
keathley
38
2.3k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
Site-Speed That Sticks
csswizardry
2
190
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Rails Girls Zürich Keynote
gr2m
94
13k
Transcript
にゃーんとわんわん @Doarakko
・2019年12月入社(2社目) ・エンジニア歴1.5年 - 仕事: Go, PHP - 趣味: Python, C++
・AtCoder 緑 ・海外サッカーをよく見ます 自己紹介 2
3
4
Slackbot を使ってます 5 ・Slack 標準搭載のボット ・誰でも簡単に使える ・改行で区切るとランダムで返る ・画像 URL は展開される
手動追加面倒くさい & 文字数制限あり 6
Bot 作りました 7 ⚽ GitHub: https://github.com/Doarakko/iyashi
Heroku 全体の構成と流れ:画像投稿 8 bot ML model postgres ① ② ③
④ ⑤
Heroku 全体の構成と流れ:にゃーん 9 bot ML model postgres ① ② ③
④ にゃーん
使用したもの Slack Bot ・Heroku:Bot を動かしている場所 ・slackbot:Python で簡単に Slack Bot を作成するためのライブラリ
動物の画像認識モデル ・PyTorch:機械学習のライブラリ ・flickr API:動物画像の収集 ・Google Colab:モデル作成の作業場所 10
・超簡単に Slack Bot を作れる ・特定のメッセージに対して、送信・返信・絵文字をつけられる Python のライブラリ slackbot 11 https://github.com/lins05/slackbot
1. データ収集 2. 画像のノイズ除去 3. 前処理 4. 転移学習 5. モデル評価
モデル作成手順 12
flickr API を使って各動物 600 枚の画像を収集(合計 3,000 枚) モデル作成手順(1 / 5):データ収集
13 flickr: 写真共有サイト
モデル作成手順(2 / 5):画像のノイズ除去 14 今回はサボりました
モデル作成手順(3 / 5):前処理 15 今回行ったもの ・画像サイズをあわせる ・正規化 よく行うもの ・ 写真から顔を切り取る(for
顔認識モデル) ・オリジナルを回転した画像を生成(水増し) ・位置の補正
モデル作成手順(4 / 5):転移学習 16 過学習:模擬試験は 90 点だったけど本番は 30 点 ・学習済みモデルのパラメータをそのまま使用
・最終層以外のパラメータを学習させないため過学習を抑えられる ・クラス数にあわせて最終層を変更 https://www.youtube.com/watch?v=yv0SzIvIhGk
モデル作成手順(4 / 5):転移学習 17 ・ImageNet で学習させた ResNet-18 を使用 ・ResNet は最大
152 層(今回は一番小さいものを使用) PyTorch から簡単に学習済みのモデルを使えます https://www.researchgate.net/figure/Proposed-Mod ified-ResNet-18-architecture-for-Bangla-HCR-In-th e-diagram-conv-stands-for_fig1_323063171
モデル作成手順(5 / 5):モデル評価 18 ・合計 3,000 枚の画像をランダムに分ける(各クラスごとの画像枚数は均等に) - 学習用:2,000 枚
- バリデーション用:500 枚 - テスト用:500 枚 テスト用のデータに対して Accuracy 0.9820 各データは必ず独立させる(例:学習用とテスト用で同じデータを使わない)
1. データ収集 2. 画像のノイズ除去 3. 前処理 4. 転移学習 5. モデル評価
モデル作成手順(再掲) 19
ルールベース 1:80 % (仮) ・「ネコ」がほとんど(弊社)なので全て「ネコ」として判定 ルールベース 2:90 % (仮) ・A
さんは「イヌ」を飼っている → A さんから投稿された画像は全て「イヌ」として判定 ・B さんは「ネコ」と「イヌ」を飼っている → ランダムで判定 機械学習:98 % ・実装難易度、工数、スペシャリスト、運用コスト、 etc 機械学習本当に必要ですか? 20 本当に機械学習が必要なのか、他に方法がないかしっかりと考える必要がある
付録:誰でもどこでもコーディングフリーで with Heroku Button 21 JSON ファイルを書くだけで簡単にツールを配布可能 ⚽ https://github.com/Doarakko/iyashi
⚽ https://speakerdeck.com/8823scholar/herokuhasi-ndafalseka
にゃーんとわんわん @Doarakko