approach to interpreting model predictions." Advances in Neural Information Processing Systems. 2017. • Lundberg, Scott M., Gabriel G. Erion, and Su-In Lee. "Consistent individualized feature attribution for tree ensembles." arXiv preprint arXiv:1802.03888 (2018). • Lundberg, Scott M., et al. "Explainable AI for Trees: From Local Explanations to Global Understanding." arXiv preprint arXiv:1905.04610 (2019). • Sundararajan, Mukund, and Amir Najmi. "The many Shapley values for model explanation." arXiv preprint arXiv:1908.08474 (2019). • Janzing, Dominik, Lenon Minorics, and Patrick Blöbaum. "Feature relevance quantification in explainable AI: A causality problem." arXiv preprint arXiv:1910.13413 (2019). • GitHub - slundberg/shap: A game theoretic approach to explain the output of any machine learning model. https://github.com/slundberg/shap. • Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Explainable.” (2019). https://christophm.github.io/interpretable-ml-book/. • Biecek, Przemyslaw, and Tomasz Burzykowski. "Predictive Models: Explore, Explain, and Debug." (2019). https://pbiecek.github.io/PM_VEE/. • SHAP(SHapley Additive exPlanations)で機械学習モデルを解釈する https://dropout009.hatenablog.com/entry/2019/11/20/091450. • 岡⽥ 卓. "ゲーム理論 新版. " 有斐閣. (2011).