Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Excelian's Grid Computing and Trade Analytics w...

Sponsored · Ship Features Fearlessly Turn features on and off without deploys. Used by thousands of Ruby developers.
Avatar for Elastic Co Elastic Co
November 03, 2015

Excelian's Grid Computing and Trade Analytics with Elastic

Financial services have a huge appetite for compute cycles in order to meet the processing requirements for complex financial computation and data intensive processing. A common way to provide this is via grid computing at financial institutions. Jay provides details on how Elasticsearch was integrated into the grid computing stack at Excelian, a large investment bank, and describes experiences working with the product and the overall feedback received from the users.

Jay Chin | Elastic{ON} Tour | London

Avatar for Elastic Co

Elastic Co

November 03, 2015
Tweet

More Decks by Elastic Co

Other Decks in Technology

Transcript

  1. Jay Chin – [email protected] Principal Consultant, Excelian 3 November 2015

    1   Grid Computing and Trade Analytics with Elastic
  2. Excelian  Technical  Consulting   2 § Financial  Services  specialists    

    § Distributed  computing  specialists  since  2006     § Experts  in  niche  and  emerging  technologies   Thought  Leadership  &  Consul5ng   So7ware  Development  and  Engineering  Services   Run  Services   Our  services  
  3. Financial  Services  –  Insatiable  appetite  for  Compute   • Algorithms  (Computers)

     that  actually   do  the  trading     • Financial  modelling     • Huge  amounts  of  data  to  process   3 Source:  Information  Week,  Wall  Street  &  Technology   Source:  The  Telegraph  
  4. What  do  compute  grids  look  like  ?   4 Typical

     Numbers  For  A  Standard  Grid   -­‐  40k  cores/engines   -­‐  30m  tasks   -­‐  120  GB  of  Log  metrics   -­‐  60  –  80%  Average  Utilisation   -­‐  Data  retention  up  to  6  Months   h?ps://flic.kr/p/ydnEvw  
  5. Grid  Maturity  in  Financial  Services   5 HPC Maturity Benchmark

    2014 Tier  I  =  Tier  I  banks   Tier  II  =  Tier  II  banks   Point  =  point  solutions   used  only  for  a  specific   use  case  (e.g.  behind  a   software  package,   only  for  one  business   line…)   Maturity  Level  
  6. Case  Study:  ELK  for  Enterprise  Grid  Reporting  Framework   • Enterprise

     Grid  with  40,000  Cores  across  4  Data   centers  in  2  Countries     • Reporting  Dashboard  for  Grid  Metrics   • Scalable  up  to  100,000  cores  and  200  million  Grid   tasks  per  day   6 Goal:  Architect  an  Enterprise  Grid  and  design   a  Grid  metrics  reporting  framework  for  a  top-­‐ tier  investment  bank.  
  7. The  Case  for  ELK   7 Features   Elas+cSearch  

    Intui5ve  Interface   Ease  of  Use   Security  Integra5on   Scalability   Support   Pricing   Features   Integra5on  with  Grid   Middleware  
  8. Initial  Architecture  –  Single  cluster  across  2  regions   8

    curl  -­‐XPUT  localhost:9200/GridA_metrics/_settings  -­‐d   '{  "index.routing.allocation.include.tag"  :  “region_A"  }'  
  9. Challenges 10 § Bespoke deployment due to security restrictions in Bank’s

    Datacentre. https://github.com/Excelian/ansible_fs_elkstack § Development of custom ETL to query Grid Metrics database and load them into ElasticSearch
  10. More  ELK  Goodness   •  Bank  was  very  impressed  with

     the   reporting  capabilities   •  Support  team  at  Elastic  was  also  superior   compared  to  some  of  the  big  vendors  we   were  dealing  with   11 AS A RESULT 1.  We  were  tasked  to  do  log  centralization  using   Logstash   2.  Explore  Watcher  for  monitoring  Grid  and   applications    
  11. Feedback  from  Investment  Bank   • For  the  first  time  ever,

      developers  were  able  to  view   Grid  metrics  correlate  them   with  logging  events  from  a   single  interface   • Application  teams  are   experimenting  with  Elastic  their   own  applications   • Developers  rethinking  logging   12
  12. Key  Takeaways   • Lots  of  opportunities  and  interest  in  ElasticSearch

     in   Financial  services   • Single  tool  to  do  log  analytics,  alerting,  events,   searching,  and  metrics   • Elastic  ticks  all  the  right  boxes  for  financial  services:   Security,  scalability,  support  SLAs,  etc.   • Elastic  Platinum  support  has  been  fantastic   • Advanced  Use  Cases  :  Fraud  Detection,  Trade   surveillance,  Market  Sentiment  Analysis     13