References Approximation via Reproducing Kernel Hilbert Spaces (RKHSs) X F is a Hilbert space with reproducing kernel K : X × X → R K(X, X) positive definite ∀X K(·, x) ∈ F, f(x) = K(·, x), f F ∀x ∈ X, e.g., K(t, x) = (1 + t − x 2 ) exp − t − x 2 Matérn Optimal (minimum norm) interpolant is APP(X, y) = K(·, X) K(X, X) −1 y, y = f(X) f − APP(X, y) 2 ∞ K(·, ·) − K(·, X) K(X, X) −1 K(X, ·) ∞ f − APP(X, y) 2 F known K(·, ·) − K(·, X) K(X, X) −1 K(X, ·) ∞ C2(X) 1 − C2(X) APP(X, y) 2 F =: ERR2(X, y) candidate set C = f ∈ F : f − APP(X, y) F C(X) f F Fasshauer, G. E. Meshfree Approximation Methods with M . (World Scientific Publishing Co., Singapore, 2007), Fasshauer, G. E. & McCourt, M. Kernel-based Approximation Methods using MATLAB. (World Scientific Publishing Co., Singapore, 2015). 8/14