Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データフレームを操作/how_to_manipulate_dataframes
Search
florets1
June 08, 2023
Programming
0
350
データフレームを操作/how_to_manipulate_dataframes
florets1
June 08, 2023
Tweet
Share
More Decks by florets1
See All by florets1
直積は便利/direct_product_is_useful
florets1
3
270
butterfly_effect/butterfly_effect_in-house
florets1
1
95
データハンドリング/data_handling
florets1
2
140
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
190
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
15k
請求と支払を照合する技術/using_full_join_in_r
florets1
2
210
応用セッション_同じデータでもP値が変わる話/key_considerations_in_NHST_2
florets1
1
1.1k
お名前から性別を推測する/Guessing_gender_from_name
florets1
1
450
バタフライ効果/butterfly_effect
florets1
0
230
Other Decks in Programming
See All in Programming
ペアーズにおけるAmazon Bedrockを⽤いた障害対応⽀援 ⽣成AIツールの導⼊事例 @ 20241115配信AWSウェビナー登壇
fukubaka0825
6
2k
Jakarta EE meets AI
ivargrimstad
0
240
Make Impossible States Impossibleを 意識してReactのPropsを設計しよう
ikumatadokoro
0
240
とにかくAWS GameDay!AWSは世界の共通言語! / Anyway, AWS GameDay! AWS is the world's lingua franca!
seike460
PRO
1
900
EMになってからチームの成果を最大化するために取り組んだこと/ Maximize team performance as EM
nashiusagi
0
100
Click-free releases & the making of a CLI app
oheyadam
2
120
Realtime API 入門
riofujimon
0
150
Hotwire or React? ~アフタートーク・本編に含めなかった話~ / Hotwire or React? after talk
harunatsujita
1
120
「今のプロジェクトいろいろ大変なんですよ、app/services とかもあって……」/After Kaigi on Rails 2024 LT Night
junk0612
5
2.2k
3rd party scriptでもReactを使いたい! Preact + Reactのハイブリッド開発
righttouch
PRO
1
610
Jakarta EE meets AI
ivargrimstad
0
160
ピラミッド、アイスクリームコーン、SMURF: 自動テストの最適バランスを求めて / Pyramid Ice-Cream-Cone and SMURF
twada
PRO
10
1.3k
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Thoughts on Productivity
jonyablonski
67
4.3k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Visualization
eitanlees
145
15k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
1.9k
Testing 201, or: Great Expectations
jmmastey
38
7.1k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Transcript
1 2023.06.10 Tokyo.R #106 データフレームを操作
Rでデータを加工してレポート
Tidyverse データの整形がはかどるライブラリ
← 代入
c() ベクトルを作る ベクトルの1番目の要素x[1]の値は0.3
▷ パイプライン x ^ 2 %>% sum %>% sqrt という書き方もあります。
tibble() データフレームを作る
この資料の表記ルール データフレームやCSVファイルのようなテーブル形状のデータを右図のように表記します。 =
架空の業務システム order_no 1 client AAA 1 abcd 2300 100 seq_no
unit_price item qty 2 efg 1500 90 (new)
order_no 1 client AAA orders (注文ヘッダー) 1 abcd 2300 100
seq_no unit_price item qty 2 efg 1500 90 (new)
1 abcd 2300 100 seq_no unit_price item qty 2 efg
1500 90 (new) details (注文明細) order_no 1 client AAA items (商品)
read_csv() ファイルを読み込む データフレーム(tibble)として読み込まれます。
行を抽出して列を選択する filter() とselect() ▷
inner_join() 結合する details orders × =
さらに結合する items × =
mutate() 列を追加する
結果をdに代入 d
在庫タイプ別の合計金額 ▷ d
注文番号ごとの合計金額 ▷ d
注文番号ごとの合計金額をsに代入 s ▷ d 注文番号ごとの合計金額
dとsを結合
注文番号ごとの割合
注文番号ごとの割合 nestとmapを使って書く例 中間変数無しで一気通貫に書ける
nestとmapの処理の流れ(1)
nestとmapの処理の流れ(2)
nestとmapの処理の流れ(3)
nestとmapの処理の流れ(4)
nestとmapの処理の流れ(5)
まとめ Tidyverse 便利なライブラリ ← 代入 C() ベクトル ▷ パイプライン tibble()
データフレーム read_csv() 読み込む filter() 抽出 select() 選択 inner_join() 結合 mutate() 列を追加 group_by() グループ化 summarise() 集計 group_nest() 入れ子にする map_dbl() リストに関数適用 ~ . ラムダ式 unnest() 入れ子を解除