Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
待ち行列のシミュレーション/queue_simulation
Search
florets1
July 13, 2023
Programming
0
330
待ち行列のシミュレーション/queue_simulation
florets1
July 13, 2023
Tweet
Share
More Decks by florets1
See All by florets1
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_with_R
florets1
0
110
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
69
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
410
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
420
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.4k
直積は便利/direct_product_is_useful
florets1
3
440
butterfly_effect/butterfly_effect_in-house
florets1
1
250
データハンドリング/data_handling
florets1
2
250
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
310
Other Decks in Programming
See All in Programming
TVerのWeb内製化 - 開発スピードと品質を両立させるまでの道のり
techtver
PRO
3
1.2k
Combinatorial Interview Problems with Backtracking Solutions - From Imperative Procedural Programming to Declarative Functional Programming - Part 1
philipschwarz
PRO
0
100
Atomics APIを知る / Understanding Atomics API
ssssota
1
180
CloudNative Days Winter 2025: 一週間で作る低レイヤコンテナランタイム
ternbusty
7
1.7k
Web エンジニアが JavaScript で AI Agent を作る / JSConf JP 2025 sponsor session
izumin5210
4
1.9k
Building AI with AI
inesmontani
PRO
1
250
[SF Ruby Conf 2025] Rails X
palkan
0
320
How Software Deployment tools have changed in the past 20 years
geshan
0
1.5k
CloudflareのSandbox SDKを試してみた
syumai
0
180
Stay Hacker 〜九州で生まれ、Perlに出会い、コミュニティで育つ〜
pyama86
2
2.4k
CSC509 Lecture 11
javiergs
PRO
0
310
生成AIを活用したリファクタリング実践 ~コードスメルをなくすためのアプローチ
raedion
0
110
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Designing for humans not robots
tammielis
254
26k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
A better future with KSS
kneath
239
18k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Embracing the Ebb and Flow
colly
88
4.9k
Building Adaptive Systems
keathley
44
2.8k
Music & Morning Musume
bryan
46
7k
Transcript
1 2023.07.15 Tokyo.R #107 待ち行列のシミュレーション
2 待ち行列 平均到着スピード 15台/時 到着時刻 開始時刻 待ち時間 完了時刻 到着間隔 平均洗車スピード
20台/時 サービス時間
3 平均待ち時間(解析解) 平均到着スピード = 𝜆 = 15/60[台/分] 平均洗車スピード = 𝜇
= 20/60[台/分] 平均利用率 𝜌 = 𝜆 𝜇 = 0.75 平均待ち時間 = 𝜌 1 − 𝜌 1 𝜇 = 9分
4 実は解析解から得られる情報は少ない ← 9分 何番目の車か 平均待ち時間(分)
5 シミュレーション(車100台分) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 単位:分
6 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
7 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 rexp(n, rate) 指数分布に従う乱数n個 平均 1/rate
8 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着時刻 = 1つ前の車の到着時刻 + 到着間隔
9 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 開始時刻 = max(1つ前の車の完了時刻, 到着時刻)
10 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 rexp(n, rate) 指数分布に従う乱数n個 平均 1/rate
11 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 完了時刻 = 開始時刻 + サービス時間
12 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 待ち時間 = 開始時刻 – 到着時刻
13 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 アイドル時間 = 開始時刻 – 1つ前の車の完了時刻
14 シミュレーション(2台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
15 シミュレーション(2台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
16 シミュレーション(2台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
17 シミュレーション(2台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着時刻 = 1つ前の車の到着時刻 + 到着間隔 開始時刻 = max(1つ前の車の完了時刻, 到着時刻) アイドル時間 = 開始時刻 – 1つ前の車の完了時刻
18 シミュレーション(append) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
19 シミュレーション(append99回) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
20 待ち時間に興味がある 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
21 100台それぞれの待ち時間 何番目の車か 待ち時間(分)
22 乱数なので実行する度に変化する
23 1000回やってみた ← 9分 何番目の車か 平均待ち時間(分) 考察 先頭集団は待ち時間が少ない。後になるほど解析解の 9分に近づいていく。
24 平均待ち時間の分布 車100台の平均待ち時間 車100台の平均待ち時間を求めるシミュレーションを1000回行ったヒストグラム ← 9分 考察 多くの場合、待ち時間は9分より短いが、20分を超え ることもあるようだ。50分待ちという極端な値もある。
25 平均アイドル率(解析解) 平均利用率 𝜌 = 𝜆 𝜇 = 0.75 平均アイドル率
= 1 − 𝜌 = 0.25
26 平均アイドル率の分布 車100台の平均アイドル率 車100台の平均アイドル率を求めるシミュレーションを1000回行ったヒストグラム 0.25→ 考察 解析解の0.25より大きい傾向だ。
27 まとめ • 解析解はシステムが長時間稼働した後の安定した状態。 • シミュレーションでは、待ち行列が発生するまでの 「ウォームアップ期間」を再現できる。 • シミュレーションでは分布も得られる。