Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
待ち行列のシミュレーション/queue_simulation
Search
florets1
July 13, 2023
Programming
0
310
待ち行列のシミュレーション/queue_simulation
florets1
July 13, 2023
Tweet
Share
More Decks by florets1
See All by florets1
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
300
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
390
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.3k
直積は便利/direct_product_is_useful
florets1
3
380
butterfly_effect/butterfly_effect_in-house
florets1
1
180
データハンドリング/data_handling
florets1
2
220
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
280
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
15k
請求と支払を照合する技術/using_full_join_in_r
florets1
2
260
Other Decks in Programming
See All in Programming
KotlinConf 2025 現地で感じたServer-Side Kotlin
n_takehata
1
230
Deep Dive into ~/.claude/projects
hiragram
7
1.2k
データの民主化を支える、透明性のあるデータ利活用への挑戦 2025-06-25 Database Engineering Meetup#7
y_ken
0
310
童醫院敏捷轉型的實踐經驗
cclai999
0
180
プロダクト志向なエンジニアがもう一歩先の価値を目指すために意識したこと
nealle
0
110
Railsアプリケーションと パフォーマンスチューニング ー 秒間5万リクエストの モバイルオーダーシステムを支える事例 ー Rubyセミナー 大阪
falcon8823
4
910
#kanrk08 / 公開版 PicoRubyとマイコンでの自作トレーニング計測装置を用いたワークアウトの理想と現実
bash0c7
1
280
PHPで始める振る舞い駆動開発(Behaviour-Driven Development)
ohmori_yusuke
2
170
なぜ適用するか、移行して理解するClean Architecture 〜構造を超えて設計を継承する〜 / Why Apply, Migrate and Understand Clean Architecture - Inherit Design Beyond Structure
seike460
PRO
1
660
What Spring Developers Should Know About Jakarta EE
ivargrimstad
0
210
Rubyでやりたい駆動開発 / Ruby driven development
chobishiba
1
320
Go1.25からのGOMAXPROCS
kuro_kurorrr
1
800
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Making Projects Easy
brettharned
116
6.3k
Building Applications with DynamoDB
mza
95
6.5k
Visualization
eitanlees
146
16k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
RailsConf 2023
tenderlove
30
1.1k
Designing for humans not robots
tammielis
253
25k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Docker and Python
trallard
44
3.4k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Transcript
1 2023.07.15 Tokyo.R #107 待ち行列のシミュレーション
2 待ち行列 平均到着スピード 15台/時 到着時刻 開始時刻 待ち時間 完了時刻 到着間隔 平均洗車スピード
20台/時 サービス時間
3 平均待ち時間(解析解) 平均到着スピード = 𝜆 = 15/60[台/分] 平均洗車スピード = 𝜇
= 20/60[台/分] 平均利用率 𝜌 = 𝜆 𝜇 = 0.75 平均待ち時間 = 𝜌 1 − 𝜌 1 𝜇 = 9分
4 実は解析解から得られる情報は少ない ← 9分 何番目の車か 平均待ち時間(分)
5 シミュレーション(車100台分) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 単位:分
6 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
7 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 rexp(n, rate) 指数分布に従う乱数n個 平均 1/rate
8 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着時刻 = 1つ前の車の到着時刻 + 到着間隔
9 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 開始時刻 = max(1つ前の車の完了時刻, 到着時刻)
10 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 rexp(n, rate) 指数分布に従う乱数n個 平均 1/rate
11 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 完了時刻 = 開始時刻 + サービス時間
12 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 待ち時間 = 開始時刻 – 到着時刻
13 シミュレーション(最初の1台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 アイドル時間 = 開始時刻 – 1つ前の車の完了時刻
14 シミュレーション(2台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
15 シミュレーション(2台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
16 シミュレーション(2台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
17 シミュレーション(2台目) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着時刻 = 1つ前の車の到着時刻 + 到着間隔 開始時刻 = max(1つ前の車の完了時刻, 到着時刻) アイドル時間 = 開始時刻 – 1つ前の車の完了時刻
18 シミュレーション(append) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間 到着間隔
到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
19 シミュレーション(append99回) 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
20 待ち時間に興味がある 到着間隔 到着時刻 開始時刻 サービス時間 完了時刻 待ち時間 アイドル時間
21 100台それぞれの待ち時間 何番目の車か 待ち時間(分)
22 乱数なので実行する度に変化する
23 1000回やってみた ← 9分 何番目の車か 平均待ち時間(分) 考察 先頭集団は待ち時間が少ない。後になるほど解析解の 9分に近づいていく。
24 平均待ち時間の分布 車100台の平均待ち時間 車100台の平均待ち時間を求めるシミュレーションを1000回行ったヒストグラム ← 9分 考察 多くの場合、待ち時間は9分より短いが、20分を超え ることもあるようだ。50分待ちという極端な値もある。
25 平均アイドル率(解析解) 平均利用率 𝜌 = 𝜆 𝜇 = 0.75 平均アイドル率
= 1 − 𝜌 = 0.25
26 平均アイドル率の分布 車100台の平均アイドル率 車100台の平均アイドル率を求めるシミュレーションを1000回行ったヒストグラム 0.25→ 考察 解析解の0.25より大きい傾向だ。
27 まとめ • 解析解はシステムが長時間稼働した後の安定した状態。 • シミュレーションでは、待ち行列が発生するまでの 「ウォームアップ期間」を再現できる。 • シミュレーションでは分布も得られる。