! ! ! ! "#$%$&'(!!!!!! )*+,#$-'(!*'#'.,/#$0'/$"&! "-/'+,1#'(!*'#'.,/#$0'/$"&! %,".,/#2!$.'%,!3($/4! #,.,)+,1!%,".,/#2!!! 5$%6#,!78!9,."&)/#'/$"&!":!)*+,#$-'(!*'#'.,/#$0'/$"&!'&1!)6;),<6,&/!#,)'.*($&%!$&/"!'!%,".,/#2!$.'%,=! "#$%&'(%! >,-,&/(2?!@6!,/!'(=!ABCCBD!$&/#"16-,1!)*+,*%&-!.,')*$?!$&!E+$-+! %,".,/#2! $)! #,)'.*(,1! $&/"! '! -".*(,/,(2! #,%6('#!B9!%#$1=!F+,!*#"-,))!$&G"(G,)!-6//$&%! /+,!)6#:'-,!$&/"!'!1$)H!6)$&%!'!&,/E"#H!":!-6/! *'/+)?!'&1!/+,&!.'**$&%!/+,!;"6&1'#2!":!/+$)! 1$)H! /"! '! )<6'#,=! ! I"/+! %,".,/#2! '&1! "/+,#! F+,! /#'1$/$"&'(! '**#"'-+! :"#! *'#'.,/#$0$&%! '! )6#:'-,! $&G"(G,)! -6//$&%!$/!$&/"!-+'#/)!'&1!.'**$&%!/+,),!*$,-,E$),!"&/"!'!*('&'#! 1".'$&=!!M,!$&/#"16-,!'!#";6)/!/,-+&$<6,!:"#!1$#,-/(2!*'#'.,/#$0K $&%! '! %,&6)K0,#"! )6#:'-,! "&/"! '! )*+,#$-'(! 1".'$&=! ! J! H,2! $&%#,1$,&/! :"#! .'H$&%! )6-+! '! *'#'.,/#$0'/$"&! *#'-/$-'(! $)! /+,! .$&$.$0'/$"&! ":! '! )/#,/-+K;'),1! .,')6#,?! /"! #,16-,! )-'(,K x U T S Surface S R3. Spherical parameterization: S : S2 ⇤ S. Spherical-tetraedron flattening: T : Tetrahedron ⇤ S2. Tetraedron unfolding: U : [0, 1]2 ⇤ Tetrahedron. Regular sampling: x = S ⇥ T ⇥ U (⇥/n) for ⇥i = 0, . . . , n 1. [Praun & Hoppe 2003] Spherical Geometry Images: = S T U : [0, 1]2 ⇥ S. Geometry Image ⇥ 3-channels image, special boundary conditions.