Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Python ではじめる辞書学習 #1
Search
Hacarus Inc.
February 16, 2018
Technology
0
670
Python ではじめる辞書学習 #1
Presentation slides at Hannnari Python #3
https://hannari-python.connpass.com/event/77366/
Hacarus Inc.
February 16, 2018
Tweet
Share
More Decks by Hacarus Inc.
See All by Hacarus Inc.
GitLab CI/CD で C#/WPFアプリケーションのテストとインストーラーのビルド・デプロイを自動化する
hacarus
0
1.3k
QA4AIに則ったMLOpsツールの活用
hacarus
0
710
0から協働ロボット外観検査システムを3ヵ月で具現化した軌跡
hacarus
0
260
ワンちゃんの健康を願う皆様に送る 犬心電図AI解析プロダクト紹介_AWS DevDay2022
hacarus
0
200
犬の心電AI解析プロダクト開発奮闘記 _クラウドからハード開発までてんこ盛り
hacarus
0
1.8k
ExplainableAIの概要とAmazon SageMaker Clarifyでの実装例
hacarus
0
1.1k
AWS Step Functions を用いた非同期学習処理の例
hacarus
0
1.4k
Dashでmyダッシュボードを作ろう ーpytrendsで見るコロナの感染拡大時期ー
hacarus
0
1.5k
Interpretable Machine Learning: モデル非依存な解釈手法の紹介
hacarus
0
1.1k
Other Decks in Technology
See All in Technology
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
310
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.5k
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
120
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
640
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
160
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
670
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
200
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
150
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
590
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.3k
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
Featured
See All Featured
Facilitating Awesome Meetings
lara
57
6.8k
Building AI with AI
inesmontani
PRO
1
700
Making Projects Easy
brettharned
120
6.6k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
Site-Speed That Sticks
csswizardry
13
1.1k
Designing for Timeless Needs
cassininazir
0
130
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
650
The Spectacular Lies of Maps
axbom
PRO
1
520
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
Writing Fast Ruby
sferik
630
62k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Transcript
Python ではじめる辞書学習 #1 2018年2月16日 はんなり Python #3 @ウィングス京都
છాوࢤ ͦΊ͔ͩͨ͠ • גࣜձࣾϋΧϧε औక$50 • 1ZUIPOྺ • ؔ+BWBɾ+"846(ɾ%FW-07&ؔ
ք۾
εύʔεϞσϦϯά • σʔλͷεύʔεੑʹணͨ͠ϞσϦϯάख๏ • ೖྗಛྔͷதͷॏཁͳͷ͕Θ͔Δ • গͳ͍ใ͔Βݩͷใͷ෮ݩ͕Ͱ͖Δ
໌ޙ౦ژͰొஃ͠·͢
ຊͷΰʔϧ ߦྻղ XJUIը૾ʹ৮ΕΔ
ߦྻղ • ͋ΔߦྻΛผͷߦྻͷੵͰද͢ ۙࣅ͢Δ ! = #$ ઢܕํఔࣜΛղ͖ͨ͘͢͠Γ σʔλͷ࣍ݩѹॖಛͷநग़ʹΘΕͨΓ
ߦྻղͷ࣮ • /VN1Z • OVNQZMJOBMH ʹ 23ղಛҟղͳͲ • TDJLJUMFBSO •
TLMFBSOEFDPNQPTJUJPO ʹ 1$" *$"ɺ/.'ɺ ࣙॻֶशͳͲ
ը૾ʹద༻ͯ͠ΈΔ • ը૾ΛҰͭͷྻϕΫτϧͱݟཱͯΔ • ෳͷը૾σʔλΛҰͭͷߦྻͱݟཱͯΔ !"" ⋯ !$" ⋮ ⋱
⋮ !"' ⋯ !$' ཁૉ Qͷ Oݸͷը૾αϯϓϧ
σʔληοτ 0MJWFUUJ'BDFTYຕ IUUQTDTOZVFEVdSPXFJTEBUBIUNM
1$" • ࢄΛ࠷େԽ͢ΔํʹओΛநग़ • ֤ओަ • ࣍ݩݮͰ͓ೃછΈ
1$"ͷओ جఈʹݮɺد༩ͷ߹ܭ
1$"Ͱ࠶ߏ
1$" # run PCA from sklearn.decomposition import PCA pca =
PCA(n_components=n_components, svd_solver='randomized’, whiten=True) pca.fit(X_train) # reconstruct original space code = pca.transform(sample.reshape(1, -1)) reconstructed = pca.inverse_transform(code)
1$" • ݩͷσʔληοτ 9ΑΓ͍࣍ݩʹམͱ͢ !" = $%" ݸͷإը૾Λͬ͘͟Γ ύλʔϯʹׂͨ͠Πϝʔδ
*$" • ͷಠཱੑʹண • ࠞ߹৴߸ͷ߹ʹΑ͍ੑೳ
*$" ͷಠཱ
*$"Ͱ࠶ߏ
*$" # run ICA from sklearn.decomposition import FastPCA ica =
FastICA(n_components=n_components, whiten=True) ica.fit(X_train) # reconstruct original space code = ica.transform(sample.reshape(1, -1)) reconstructed = ica.inverse_transform(code)
/.' • ཁૉ͕ඇෛͱ͍͏੍Λିͨ͠ߦྻղ • جఈͷ͠߹ΘͤͰݩͷσʔλΛදݱ • ಛநग़ͱͯ͠ΈΔ͜ͱՄ
/.'ͷಛߦྻ ࣍ݩɺ࠶ߏΤϥʔ ϑϩϏϊεϊϧϜ
/.'Ͱ࠶ߏ
/.' # run NMF from sklearn.decomposition import NMF nmf =
NMF(n_components=n_components) W = nmf.fit_transform(X_train) H = nmf.components_ # reconstruct original image code = nmf.transform(sample.reshape(1, -1)) reconstructed = nmf.inverse_transform(code)
/.' • εύʔεͳղ ਓͷը૾Λ ͷإͷύλʔϯͷ͠߹ΘͤͰදݱ
·ͱΊ • 1$"ɺ*$"ͱ /.'Λෳͷը૾σʔλʹର͠ ࣮ͯࢪ • ࣍ʑճࣙॻֶश • αϯϓϧίʔυ IUUQTHJUJPW"D47
উखʹ ࣍ճ༧ࠂ • 1Z$PO 1)Ϩϙʔτ • དྷि ɺ
ϚχϥͰ։࠵ • ฐࣾϑΟϦϐϯͷΤϯδχΞ͕ొஃ • IUUQTQZDPOQZUIPOQI • ࣍ճΜͳΓ 1ZUIPOʹࢀՃͰ͖Δ ͔