Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介 Balancing Relevance and Discovery to Inspi...
Search
Takashi Nishibayashi
October 17, 2020
Research
0
750
論文紹介 Balancing Relevance and Discovery to Inspire Customers in the IKEA App
RecSys2020論文読み会の発表資料です
https://connpass.com/event/189192/
Takashi Nishibayashi
October 17, 2020
Tweet
Share
More Decks by Takashi Nishibayashi
See All by Takashi Nishibayashi
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
520
入院医療費算定業務をAIで支援する:包括医療費支払い制度とDPCコーディング (公開版)
hagino3000
0
170
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
170
論文紹介 Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models
hagino3000
0
920
論文紹介 Audience Size Forecasting Fast and Smart Budget Planning for Media Buyers
hagino3000
0
250
論文紹介 Towards a Fair Marketplace: Counterfactual Evaluation of the trade-off between Relevance, Fairness & Satisfaction in Recommendation Systems
hagino3000
1
660
論文紹介 Budget Management Strategies in Repeated Auctions (公開版)
hagino3000
2
320
論文紹介 A Request-level Guaranteed Delivery Advertising Planning: Forecasting and Allocation
hagino3000
1
150
論文紹介 Online Experimentation with Surrogate Metrics Guidelines and a Case Study
hagino3000
1
400
Other Decks in Research
See All in Research
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
Nullspace MPC
mizuhoaoki
1
690
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
130
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
360
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
470
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
150
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
130
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
580
Featured
See All Featured
Prompt Engineering for Job Search
mfonobong
0
150
The Curious Case for Waylosing
cassininazir
0
230
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
[SF Ruby Conf 2025] Rails X
palkan
0
740
Between Models and Reality
mayunak
1
180
Claude Code のすすめ
schroneko
67
210k
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
420
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Color Theory Basics | Prateek | Gurzu
gurzu
0
190
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Transcript
จհ #BMBODJOH3FMFWBODFBOE%JTDPWFSZ UP*OTQJSF$VTUPNFSTJOUIF*,&""QQ 3FD4ZTจಡΈձ ྛ !IBHJOP
"CPVUNF ✦ 4PGUXBSF&OHJOFFSBU70:"(&(3061 ✦ ࠂ৴ϓϩμΫτͷ։ൃΛ͍ͯ͠·͢ ✦ 3FD4ZTॳࢀՃ ✦ 5XJUUFS!IBHJOP
հ͢Δจ
༰ ✦ *,&"ΞϓϦͷ*OTQJSBUJPOBM'FFEʹ͓͚ΔϦίϝϯυํࡦʹ#BOEJU 'FFECBDLϩάͬͨϙϦγʔֶशΞϓϩʔνΛద༻ͨ͠ ✦ Ϣʔβʔ͕ΠϯεϐϨʔγϣϯΛಘΒΕΔ༷ʹDPVOUFSGBDUVBMSJTL NJOJNJ[BUJPOQSJODJQMF<>ʹج͍ͮͯํࡦΛֶशͨ͠ ✦ "#ςετͷ݁ՌɺڠௐϑΟϧλϦϯάʹΑΔํࡦͱൺֱͯ͠ΫϦοΫ ্͕ঢͨ͠
✦ ϖʔύʔʹଛࣦ࣮ؔݧ݁Ռ΄ͱΜͲॻ͍ͯͳ͔ͬͨͷͰɺ͜ͷൃ දޱ಄ൃද༰Λͬͯิ͍ͯ͠·͢
*OTQJSBUJPOBM'FFE ✦ Ϣʔβʔ༷ʑͳ෦ͷλΠϓʹ͋ΘͤͯՈ۩͕ ஔ͞ΕͨΠϝʔδ͕ӾཡͰ͖Δ ✦ ͜ͷϑΟʔυϢʔβʔʹؔ࿈͕͋ΓΠϯεϐ ϨʔγϣϯΛ༩͑Δͷʹ͍ͨ͠ɻڻ͖ͷཁૉ͕ ٻΊΒΕΔɻ 3FMFWBODFBOE%JTDPWFSZUP*OTQJSF
✦ ؔ࿈ੑʹಛԽͨ͠Ϧίϝϯυػೳطʹ͋Δ
$POUFYUVBMCBOEJUTXJUICBUDIMFBSOJOHGSPN MPHHFECBOEJUGFFECBDL ✦ Ͳͷը૾Λදࣔ͢Δ͔ ✦ $POUFYUVBM#BOEJUTͰܾΊΔ ✦ $POUFYUVBM#BOEJUTͷߦಈબϙϦγʔͷֶश ✦ όονͰΔ
㱠ΦϯϥΠϯֶश ✦ #BOEJU'FFECBDLϩάΛͬͯ܇࿅ ✦ CBTFEPOUIFQSJODJQMFPGDPVOUFSGBDUVBMSJTLNJOJNJ[BUJPO<> ✦ $PVOUFSGBDUVBM-FBSOJOH
✦ ߦಈ ✦ ը૾Λબͯ͠දࣔ͢Δࣄ ✦ ใु ✦ දࣔͨ͠ը૾͕ΫϦοΫ͞ΕΔ͔Ͳ͏͔㱨\ ^ ✦
ίϯςΩετ ✦ ΞϓϦ্ͷϢʔβʔࣗͷաڈͷ;Δ·͍ *OTQJSBUJPOBM'FFEͷ#BOEJUઃఆ
$POUFYUVBMCBOEJUT ܁Γฦ͠ҙࢥܾఆʹ͓͍ͯྦྷੵใुͷ࠷େԽΛૂ͏ํࡦͷͳ͔Ͱ ϥϯυຖͷίϯςΩετใΛར༻ͯ͠ٻΊͨείΞʹैͬͯߦಈΛબ͢ Δͷɻ؍ଌͨ͠ใुΛͬͯείΞϦϯάϞσϧΛߋ৽͍ͯ͘͠ɻ είΞϦϯάϞσϧʹઢܗϞσϧΛ࠾༻ͨ͠-JO6$#<>ͳͲɺ༷ʑͳํࡦ͕ఏҊ͞Ε͍ͯΔ
ࢀߟ-JO6$#<> ϥϯυUʹ͓͚ΔߦಈBͷ είΞใुͷظ ඪ४ภࠩºЋ είΞ͕࠷େͷߦಈΛ࣮ߦ ύϥϝʔλߋ৽
#BUDIMFBSOJOHGSPNMPHHFECBOEJUGFFECBDL ✦ CBOEJUGFFECBDLϩάΛֶͬͨश ✦ աڈͷߦಈબϙϦγʔʹΑΔόΠΞεͷิਖ਼͕ඞཁ ✦ ਪનγεςϜͷϩάجຊతʹCBOEJUGFFECBDL ✦ ΦϯϥΠϯֶशͰͳ͍ཧ༝ಛʹઆ໌͕ແ͔͕ͬͨ ✦
ϦΫΤετྔ͕ଟ͍αʔϏεͰόϯσΟοτΞϧΰϦζϜΛ͏߹ จͷखଓ͖௨ΓʹύϥϝʔλΛஞ࣍ߋ৽͢Δέʔεগͳ͍ͱࢥ͏ ✦ ΦϯϥΠϯֶशӡ༻͕େม
ิ#BOEJU'FFECBDLϩάΛֶͬͨश ✦ #BOEJU'FFECBDLϩάΛར༻ͨ͠৽͍͠ߦಈબϙϦγʔͷੑೳධՁΛߦͳ͏ ख๏ଘࡏ͢Δ ˠ0⒎1PMJDZ&WBMVBUJPO *OWFSTF1SPQFOTJUZ4DPSJOH %PVCMZ3PCVTU ʜ ✦
ੑೳධՁ͕࠷େʹͳΔ༷ʹߦಈબϙϦγʔΛֶश͢Εྑ͍ ✦ ߦಈΛBɺίϯςΩετΛYɺใुΛSͱͯ͠*14ͰධՁ͢Δ߹ КOFXͷ*14$PVOUFSGBDUVBM&TUJNBUPS
ߦಈબϙϦγʔͷֶश ϙϦγʔК͕ίϯςΩετYʹରͯ͠ߦಈZΛબͿ֬ είΞ ΛК ZcY ใुΛЎͱ͓͘ɻաڈͷϙϦγʔКͷείΞͱ؍ଌͨ͠ใुΛར༻ͯ͠ɺ৽ͨͳ ϙϦγʔКВΛֶश͢Δ ޱ಄ൃදεϥΠυ͔Βഈआ ͜ͷ··Ͱࢄͷ͕ग़ΔͷͰɺ<>Λࢀߟʹ͍͔ͭ͘ͷΛऔΓ͍Ε͍ͯΔͱͷઆ
໌͕͋ͬͨ
ଛࣦؔͷײతͳղऍ ใु͕ಘΒΕͨߦಈͰಛʹաڈͷϙϦγʔͷείΞ͕͍ߦಈͷείΞ্͕ ͕Εϩε͕Լ͕Δɻͭ·Γ͋·Γબ͠ͳ͔͕ͬͨΫϦοΫ͕ಘΒΕͨߦಈΛଟ͘ બͿ༷ʹֶश͢Δɻ ޱ಄ൃදεϥΠυ͔Βഈआ
ଛࣦؔͲ͔͜Βདྷͨͷ͔ ޱ಄ൃදεϥΠυͷࣜ3FGFSFODFʹ͋Δ 4XBNJOBUIBOΒ$PVOUFSGBDUVBMSJTL NJOJNJ[BUJPO-FBSOJOHGSPNMPHHFECBOEJU GFFECBDLz *$.- <>ʹ͓͚ΔఏҊख๏ ͷಋग़ͷং൫ʹ͋Δ*14ϕʔεͷࣜɻ ͳͷͰ࣮ࡍʹ͍ͬͯΔ
ͷ<>ͷఏҊख๏ͷࣜ ͩͱࢥΘΕΔ
$PVOUFSGBDUVBMSJTLNJOJNJ[BUJPO-FBSOJOHGSPNMPHHFE CBOEJUGFFECBDL *$.- <> ✦ *14ͷࢄ༝དྷͷΤϥʔΛόϯυ͢ΔVOCJBTFEFTUJNBUPSͰ͋Δ $3.$PVOUFSGBDUVBM3JTL.JOJNJ[BUJPOΛఏҊɺࢄΛਖ਼ଇԽ߲ʹ ✦ $3.Λֶश͢Δ܇࿅ΞϧΰϦζϜ10&.ͷఏҊ
ิ%PVCMZSPCVTUNFUIPEGPSDPVOUFSGBDUVBM MFBSOJOH Yuan, Bowen, et al. "Improving ad click prediction
by considering non-displayed events." Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019.
ΦϯϥΠϯධՁ ✦ ධՁࢦඪ$53 ✦ ͷ্͕֬ೝͰ͖ͨ ✦ ڠௐϑΟϧλϦϯάϕʔεͷख๏ͱൺֱ ✦ ڠௐϑΟϧλϦϯά3FMFWBODFॏࢹ ✦
ॳͷతୡͰ͖ͨ ✦ આ໌ແ͔͕ͬͨʮࠓ·Ͱʹਪન͠ͳ͔ͬͨΞΠςϜΛଟ͘ਪન͢ΔࣄͰΫ ϦοΫ͕૿͑ͨʯˠ*OTQJSBUJPOΛ༩͑Δࣄ͕Ͱ͖ͨͱղऍͰ͖ͦ͏ ✦ ΫϦοΫ͕ݮ͍ͬͯͳ͍ˠϏδωεࢦඪΛᆝଛ͍ͯ͠ͳ͍
ͷ࣭ٙԠͷൈਮ 2%PVCMZ3PCVTUͰͳ͘*14ʹͨ͠ͷԿނ ಛʹΦϑϥΠϯධՁͰࢄ͕ʹͳΒͳ͔͔ͬͨ "%PVCMZ3PCVTUߟ͑ͳ͔ͬͨɻ͔͠͠ࢄΛ͑ΔͨΊʹεί ΞͷΫϦοϐϯάΛߦͳͬͨ 2"#ςετΛि͚ؒͩΒͤͨ͜ͱͰɺϢʔβʔ͕׳Ε͠Μͩ " ͱҧͬ
͍ͯͨͨΊ # ͷ$53͕ߴ͘ͳͬͨՄೳੑ͋Δ͔ "ͦͷޙҰ؏ͯ͠ߴ͍$53Λ͍ࣔͯ͠Δ͔ΒɺͦΕແ͍ͱߟ͍͑ͯΔ 2୳ࡧΛߦͳ͏ࣄͰΫϦοΫͷݮগΈΒΕͳ͔͔ͬͨ "શ͘ٯͰ૿Ճͨ͠
ࢀߟจݙ <>5ÓUI #BMÂ[T 4BOEIZB4BDIJEBOBOEBO BOE&NJM4+SHFOTFO#BMBODJOH3FMFWBODFBOE %JTDPWFSZUP*OTQJSF$VTUPNFSTJOUIF*,&""QQ'PVSUFFOUI"$.$POGFSFODFPO 3FDPNNFOEFS4ZTUFNT <>-J -JIPOH FUBM"DPOUFYUVBMCBOEJUBQQSPBDIUPQFSTPOBMJ[FEOFXTBSUJDMF
SFDPNNFOEBUJPO1SPDFFEJOHTPGUIFUIJOUFSOBUJPOBMDPOGFSFODFPO8PSMEXJEFXFC <>4XBNJOBUIBO "EJUI BOE5IPSTUFO+PBDIJNT$PVOUFSGBDUVBMSJTLNJOJNJ[BUJPO-FBSOJOH GSPNMPHHFECBOEJUGFFECBDL*OUFSOBUJPOBM$POGFSFODFPO.BDIJOF-FBSOJOH <>:VBO #PXFO FUBM*NQSPWJOHBEDMJDLQSFEJDUJPOCZDPOTJEFSJOHOPOEJTQMBZFE FWFOUT1SPDFFEJOHTPGUIFUI"$.*OUFSOBUJPOBM$POGFSFODFPO*OGPSNBUJPOBOE ,OPXMFEHF.BOBHFNFOU