Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介 Balancing Relevance and Discovery to Inspi...
Search
Takashi Nishibayashi
October 17, 2020
Research
0
750
論文紹介 Balancing Relevance and Discovery to Inspire Customers in the IKEA App
RecSys2020論文読み会の発表資料です
https://connpass.com/event/189192/
Takashi Nishibayashi
October 17, 2020
Tweet
Share
More Decks by Takashi Nishibayashi
See All by Takashi Nishibayashi
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
480
入院医療費算定業務をAIで支援する:包括医療費支払い制度とDPCコーディング (公開版)
hagino3000
0
150
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
160
論文紹介 Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models
hagino3000
0
910
論文紹介 Audience Size Forecasting Fast and Smart Budget Planning for Media Buyers
hagino3000
0
250
論文紹介 Towards a Fair Marketplace: Counterfactual Evaluation of the trade-off between Relevance, Fairness & Satisfaction in Recommendation Systems
hagino3000
1
650
論文紹介 Budget Management Strategies in Repeated Auctions (公開版)
hagino3000
2
310
論文紹介 A Request-level Guaranteed Delivery Advertising Planning: Forecasting and Allocation
hagino3000
1
140
論文紹介 Online Experimentation with Surrogate Metrics Guidelines and a Case Study
hagino3000
1
390
Other Decks in Research
See All in Research
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
190
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
160
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
410
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
360
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
280
湯村研究室の紹介2025 / yumulab2025
yumulab
0
280
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
440
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
370
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
110
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
560
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
3
970
Featured
See All Featured
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
130
Raft: Consensus for Rubyists
vanstee
141
7.3k
The World Runs on Bad Software
bkeepers
PRO
72
12k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
200
Balancing Empowerment & Direction
lara
5
830
Color Theory Basics | Prateek | Gurzu
gurzu
0
160
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.2k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Docker and Python
trallard
47
3.7k
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
Why Our Code Smells
bkeepers
PRO
340
57k
Transcript
จհ #BMBODJOH3FMFWBODFBOE%JTDPWFSZ UP*OTQJSF$VTUPNFSTJOUIF*,&""QQ 3FD4ZTจಡΈձ ྛ !IBHJOP
"CPVUNF ✦ 4PGUXBSF&OHJOFFSBU70:"(&(3061 ✦ ࠂ৴ϓϩμΫτͷ։ൃΛ͍ͯ͠·͢ ✦ 3FD4ZTॳࢀՃ ✦ 5XJUUFS!IBHJOP
հ͢Δจ
༰ ✦ *,&"ΞϓϦͷ*OTQJSBUJPOBM'FFEʹ͓͚ΔϦίϝϯυํࡦʹ#BOEJU 'FFECBDLϩάͬͨϙϦγʔֶशΞϓϩʔνΛద༻ͨ͠ ✦ Ϣʔβʔ͕ΠϯεϐϨʔγϣϯΛಘΒΕΔ༷ʹDPVOUFSGBDUVBMSJTL NJOJNJ[BUJPOQSJODJQMF<>ʹج͍ͮͯํࡦΛֶशͨ͠ ✦ "#ςετͷ݁ՌɺڠௐϑΟϧλϦϯάʹΑΔํࡦͱൺֱͯ͠ΫϦοΫ ্͕ঢͨ͠
✦ ϖʔύʔʹଛࣦ࣮ؔݧ݁Ռ΄ͱΜͲॻ͍ͯͳ͔ͬͨͷͰɺ͜ͷൃ දޱ಄ൃද༰Λͬͯิ͍ͯ͠·͢
*OTQJSBUJPOBM'FFE ✦ Ϣʔβʔ༷ʑͳ෦ͷλΠϓʹ͋ΘͤͯՈ۩͕ ஔ͞ΕͨΠϝʔδ͕ӾཡͰ͖Δ ✦ ͜ͷϑΟʔυϢʔβʔʹؔ࿈͕͋ΓΠϯεϐ ϨʔγϣϯΛ༩͑Δͷʹ͍ͨ͠ɻڻ͖ͷཁૉ͕ ٻΊΒΕΔɻ 3FMFWBODFBOE%JTDPWFSZUP*OTQJSF
✦ ؔ࿈ੑʹಛԽͨ͠Ϧίϝϯυػೳطʹ͋Δ
$POUFYUVBMCBOEJUTXJUICBUDIMFBSOJOHGSPN MPHHFECBOEJUGFFECBDL ✦ Ͳͷը૾Λදࣔ͢Δ͔ ✦ $POUFYUVBM#BOEJUTͰܾΊΔ ✦ $POUFYUVBM#BOEJUTͷߦಈબϙϦγʔͷֶश ✦ όονͰΔ
㱠ΦϯϥΠϯֶश ✦ #BOEJU'FFECBDLϩάΛͬͯ܇࿅ ✦ CBTFEPOUIFQSJODJQMFPGDPVOUFSGBDUVBMSJTLNJOJNJ[BUJPO<> ✦ $PVOUFSGBDUVBM-FBSOJOH
✦ ߦಈ ✦ ը૾Λબͯ͠දࣔ͢Δࣄ ✦ ใु ✦ දࣔͨ͠ը૾͕ΫϦοΫ͞ΕΔ͔Ͳ͏͔㱨\ ^ ✦
ίϯςΩετ ✦ ΞϓϦ্ͷϢʔβʔࣗͷաڈͷ;Δ·͍ *OTQJSBUJPOBM'FFEͷ#BOEJUઃఆ
$POUFYUVBMCBOEJUT ܁Γฦ͠ҙࢥܾఆʹ͓͍ͯྦྷੵใुͷ࠷େԽΛૂ͏ํࡦͷͳ͔Ͱ ϥϯυຖͷίϯςΩετใΛར༻ͯ͠ٻΊͨείΞʹैͬͯߦಈΛબ͢ Δͷɻ؍ଌͨ͠ใुΛͬͯείΞϦϯάϞσϧΛߋ৽͍ͯ͘͠ɻ είΞϦϯάϞσϧʹઢܗϞσϧΛ࠾༻ͨ͠-JO6$#<>ͳͲɺ༷ʑͳํࡦ͕ఏҊ͞Ε͍ͯΔ
ࢀߟ-JO6$#<> ϥϯυUʹ͓͚ΔߦಈBͷ είΞใुͷظ ඪ४ภࠩºЋ είΞ͕࠷େͷߦಈΛ࣮ߦ ύϥϝʔλߋ৽
#BUDIMFBSOJOHGSPNMPHHFECBOEJUGFFECBDL ✦ CBOEJUGFFECBDLϩάΛֶͬͨश ✦ աڈͷߦಈબϙϦγʔʹΑΔόΠΞεͷิਖ਼͕ඞཁ ✦ ਪનγεςϜͷϩάجຊతʹCBOEJUGFFECBDL ✦ ΦϯϥΠϯֶशͰͳ͍ཧ༝ಛʹઆ໌͕ແ͔͕ͬͨ ✦
ϦΫΤετྔ͕ଟ͍αʔϏεͰόϯσΟοτΞϧΰϦζϜΛ͏߹ จͷखଓ͖௨ΓʹύϥϝʔλΛஞ࣍ߋ৽͢Δέʔεগͳ͍ͱࢥ͏ ✦ ΦϯϥΠϯֶशӡ༻͕େม
ิ#BOEJU'FFECBDLϩάΛֶͬͨश ✦ #BOEJU'FFECBDLϩάΛར༻ͨ͠৽͍͠ߦಈબϙϦγʔͷੑೳධՁΛߦͳ͏ ख๏ଘࡏ͢Δ ˠ0⒎1PMJDZ&WBMVBUJPO *OWFSTF1SPQFOTJUZ4DPSJOH %PVCMZ3PCVTU ʜ ✦
ੑೳධՁ͕࠷େʹͳΔ༷ʹߦಈબϙϦγʔΛֶश͢Εྑ͍ ✦ ߦಈΛBɺίϯςΩετΛYɺใुΛSͱͯ͠*14ͰධՁ͢Δ߹ КOFXͷ*14$PVOUFSGBDUVBM&TUJNBUPS
ߦಈબϙϦγʔͷֶश ϙϦγʔК͕ίϯςΩετYʹରͯ͠ߦಈZΛબͿ֬ είΞ ΛК ZcY ใुΛЎͱ͓͘ɻաڈͷϙϦγʔКͷείΞͱ؍ଌͨ͠ใुΛར༻ͯ͠ɺ৽ͨͳ ϙϦγʔКВΛֶश͢Δ ޱ಄ൃදεϥΠυ͔Βഈआ ͜ͷ··Ͱࢄͷ͕ग़ΔͷͰɺ<>Λࢀߟʹ͍͔ͭ͘ͷΛऔΓ͍Ε͍ͯΔͱͷઆ
໌͕͋ͬͨ
ଛࣦؔͷײతͳղऍ ใु͕ಘΒΕͨߦಈͰಛʹաڈͷϙϦγʔͷείΞ͕͍ߦಈͷείΞ্͕ ͕Εϩε͕Լ͕Δɻͭ·Γ͋·Γબ͠ͳ͔͕ͬͨΫϦοΫ͕ಘΒΕͨߦಈΛଟ͘ બͿ༷ʹֶश͢Δɻ ޱ಄ൃදεϥΠυ͔Βഈआ
ଛࣦؔͲ͔͜Βདྷͨͷ͔ ޱ಄ൃදεϥΠυͷࣜ3FGFSFODFʹ͋Δ 4XBNJOBUIBOΒ$PVOUFSGBDUVBMSJTL NJOJNJ[BUJPO-FBSOJOHGSPNMPHHFECBOEJU GFFECBDLz *$.- <>ʹ͓͚ΔఏҊख๏ ͷಋग़ͷং൫ʹ͋Δ*14ϕʔεͷࣜɻ ͳͷͰ࣮ࡍʹ͍ͬͯΔ
ͷ<>ͷఏҊख๏ͷࣜ ͩͱࢥΘΕΔ
$PVOUFSGBDUVBMSJTLNJOJNJ[BUJPO-FBSOJOHGSPNMPHHFE CBOEJUGFFECBDL *$.- <> ✦ *14ͷࢄ༝དྷͷΤϥʔΛόϯυ͢ΔVOCJBTFEFTUJNBUPSͰ͋Δ $3.$PVOUFSGBDUVBM3JTL.JOJNJ[BUJPOΛఏҊɺࢄΛਖ਼ଇԽ߲ʹ ✦ $3.Λֶश͢Δ܇࿅ΞϧΰϦζϜ10&.ͷఏҊ
ิ%PVCMZSPCVTUNFUIPEGPSDPVOUFSGBDUVBM MFBSOJOH Yuan, Bowen, et al. "Improving ad click prediction
by considering non-displayed events." Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019.
ΦϯϥΠϯධՁ ✦ ධՁࢦඪ$53 ✦ ͷ্͕֬ೝͰ͖ͨ ✦ ڠௐϑΟϧλϦϯάϕʔεͷख๏ͱൺֱ ✦ ڠௐϑΟϧλϦϯά3FMFWBODFॏࢹ ✦
ॳͷతୡͰ͖ͨ ✦ આ໌ແ͔͕ͬͨʮࠓ·Ͱʹਪન͠ͳ͔ͬͨΞΠςϜΛଟ͘ਪન͢ΔࣄͰΫ ϦοΫ͕૿͑ͨʯˠ*OTQJSBUJPOΛ༩͑Δࣄ͕Ͱ͖ͨͱղऍͰ͖ͦ͏ ✦ ΫϦοΫ͕ݮ͍ͬͯͳ͍ˠϏδωεࢦඪΛᆝଛ͍ͯ͠ͳ͍
ͷ࣭ٙԠͷൈਮ 2%PVCMZ3PCVTUͰͳ͘*14ʹͨ͠ͷԿނ ಛʹΦϑϥΠϯධՁͰࢄ͕ʹͳΒͳ͔͔ͬͨ "%PVCMZ3PCVTUߟ͑ͳ͔ͬͨɻ͔͠͠ࢄΛ͑ΔͨΊʹεί ΞͷΫϦοϐϯάΛߦͳͬͨ 2"#ςετΛि͚ؒͩΒͤͨ͜ͱͰɺϢʔβʔ͕׳Ε͠Μͩ " ͱҧͬ
͍ͯͨͨΊ # ͷ$53͕ߴ͘ͳͬͨՄೳੑ͋Δ͔ "ͦͷޙҰ؏ͯ͠ߴ͍$53Λ͍ࣔͯ͠Δ͔ΒɺͦΕແ͍ͱߟ͍͑ͯΔ 2୳ࡧΛߦͳ͏ࣄͰΫϦοΫͷݮগΈΒΕͳ͔͔ͬͨ "શ͘ٯͰ૿Ճͨ͠
ࢀߟจݙ <>5ÓUI #BMÂ[T 4BOEIZB4BDIJEBOBOEBO BOE&NJM4+SHFOTFO#BMBODJOH3FMFWBODFBOE %JTDPWFSZUP*OTQJSF$VTUPNFSTJOUIF*,&""QQ'PVSUFFOUI"$.$POGFSFODFPO 3FDPNNFOEFS4ZTUFNT <>-J -JIPOH FUBM"DPOUFYUVBMCBOEJUBQQSPBDIUPQFSTPOBMJ[FEOFXTBSUJDMF
SFDPNNFOEBUJPO1SPDFFEJOHTPGUIFUIJOUFSOBUJPOBMDPOGFSFODFPO8PSMEXJEFXFC <>4XBNJOBUIBO "EJUI BOE5IPSTUFO+PBDIJNT$PVOUFSGBDUVBMSJTLNJOJNJ[BUJPO-FBSOJOH GSPNMPHHFECBOEJUGFFECBDL*OUFSOBUJPOBM$POGFSFODFPO.BDIJOF-FBSOJOH <>:VBO #PXFO FUBM*NQSPWJOHBEDMJDLQSFEJDUJPOCZDPOTJEFSJOHOPOEJTQMBZFE FWFOUT1SPDFFEJOHTPGUIFUI"$.*OUFSOBUJPOBM$POGFSFODFPO*OGPSNBUJPOBOE ,OPXMFEHF.BOBHFNFOU