Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介 Balancing Relevance and Discovery to Inspi...
Search
Takashi Nishibayashi
October 17, 2020
Research
0
740
論文紹介 Balancing Relevance and Discovery to Inspire Customers in the IKEA App
RecSys2020論文読み会の発表資料です
https://connpass.com/event/189192/
Takashi Nishibayashi
October 17, 2020
Tweet
Share
More Decks by Takashi Nishibayashi
See All by Takashi Nishibayashi
入院医療費算定業務をAIで支援する:包括医療費支払い制度とDPCコーディング (公開版)
hagino3000
0
130
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
150
論文紹介 Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models
hagino3000
0
880
論文紹介 Audience Size Forecasting Fast and Smart Budget Planning for Media Buyers
hagino3000
0
240
論文紹介 Towards a Fair Marketplace: Counterfactual Evaluation of the trade-off between Relevance, Fairness & Satisfaction in Recommendation Systems
hagino3000
1
640
論文紹介 Budget Management Strategies in Repeated Auctions (公開版)
hagino3000
2
290
論文紹介 A Request-level Guaranteed Delivery Advertising Planning: Forecasting and Allocation
hagino3000
1
130
論文紹介 Online Experimentation with Surrogate Metrics Guidelines and a Case Study
hagino3000
1
370
論文紹介 Bidding Machine: Learning to Bid for Directly Optimizing Profits in Display Advertising
hagino3000
1
210
Other Decks in Research
See All in Research
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
730
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
360
snlp2025_prevent_llm_spikes
takase
0
390
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
360
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
170
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
570
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
360
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.6k
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
5.8k
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
130
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
130
Featured
See All Featured
Gamification - CAS2011
davidbonilla
81
5.5k
How to Think Like a Performance Engineer
csswizardry
27
2.2k
How GitHub (no longer) Works
holman
315
140k
For a Future-Friendly Web
brad_frost
180
10k
Product Roadmaps are Hard
iamctodd
PRO
55
11k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
The Cost Of JavaScript in 2023
addyosmani
55
9.1k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
KATA
mclloyd
PRO
32
15k
Transcript
จհ #BMBODJOH3FMFWBODFBOE%JTDPWFSZ UP*OTQJSF$VTUPNFSTJOUIF*,&""QQ 3FD4ZTจಡΈձ ྛ !IBHJOP
"CPVUNF ✦ 4PGUXBSF&OHJOFFSBU70:"(&(3061 ✦ ࠂ৴ϓϩμΫτͷ։ൃΛ͍ͯ͠·͢ ✦ 3FD4ZTॳࢀՃ ✦ 5XJUUFS!IBHJOP
հ͢Δจ
༰ ✦ *,&"ΞϓϦͷ*OTQJSBUJPOBM'FFEʹ͓͚ΔϦίϝϯυํࡦʹ#BOEJU 'FFECBDLϩάͬͨϙϦγʔֶशΞϓϩʔνΛద༻ͨ͠ ✦ Ϣʔβʔ͕ΠϯεϐϨʔγϣϯΛಘΒΕΔ༷ʹDPVOUFSGBDUVBMSJTL NJOJNJ[BUJPOQSJODJQMF<>ʹج͍ͮͯํࡦΛֶशͨ͠ ✦ "#ςετͷ݁ՌɺڠௐϑΟϧλϦϯάʹΑΔํࡦͱൺֱͯ͠ΫϦοΫ ্͕ঢͨ͠
✦ ϖʔύʔʹଛࣦ࣮ؔݧ݁Ռ΄ͱΜͲॻ͍ͯͳ͔ͬͨͷͰɺ͜ͷൃ දޱ಄ൃද༰Λͬͯิ͍ͯ͠·͢
*OTQJSBUJPOBM'FFE ✦ Ϣʔβʔ༷ʑͳ෦ͷλΠϓʹ͋ΘͤͯՈ۩͕ ஔ͞ΕͨΠϝʔδ͕ӾཡͰ͖Δ ✦ ͜ͷϑΟʔυϢʔβʔʹؔ࿈͕͋ΓΠϯεϐ ϨʔγϣϯΛ༩͑Δͷʹ͍ͨ͠ɻڻ͖ͷཁૉ͕ ٻΊΒΕΔɻ 3FMFWBODFBOE%JTDPWFSZUP*OTQJSF
✦ ؔ࿈ੑʹಛԽͨ͠Ϧίϝϯυػೳطʹ͋Δ
$POUFYUVBMCBOEJUTXJUICBUDIMFBSOJOHGSPN MPHHFECBOEJUGFFECBDL ✦ Ͳͷը૾Λදࣔ͢Δ͔ ✦ $POUFYUVBM#BOEJUTͰܾΊΔ ✦ $POUFYUVBM#BOEJUTͷߦಈબϙϦγʔͷֶश ✦ όονͰΔ
㱠ΦϯϥΠϯֶश ✦ #BOEJU'FFECBDLϩάΛͬͯ܇࿅ ✦ CBTFEPOUIFQSJODJQMFPGDPVOUFSGBDUVBMSJTLNJOJNJ[BUJPO<> ✦ $PVOUFSGBDUVBM-FBSOJOH
✦ ߦಈ ✦ ը૾Λબͯ͠දࣔ͢Δࣄ ✦ ใु ✦ දࣔͨ͠ը૾͕ΫϦοΫ͞ΕΔ͔Ͳ͏͔㱨\ ^ ✦
ίϯςΩετ ✦ ΞϓϦ্ͷϢʔβʔࣗͷաڈͷ;Δ·͍ *OTQJSBUJPOBM'FFEͷ#BOEJUઃఆ
$POUFYUVBMCBOEJUT ܁Γฦ͠ҙࢥܾఆʹ͓͍ͯྦྷੵใुͷ࠷େԽΛૂ͏ํࡦͷͳ͔Ͱ ϥϯυຖͷίϯςΩετใΛར༻ͯ͠ٻΊͨείΞʹैͬͯߦಈΛબ͢ Δͷɻ؍ଌͨ͠ใुΛͬͯείΞϦϯάϞσϧΛߋ৽͍ͯ͘͠ɻ είΞϦϯάϞσϧʹઢܗϞσϧΛ࠾༻ͨ͠-JO6$#<>ͳͲɺ༷ʑͳํࡦ͕ఏҊ͞Ε͍ͯΔ
ࢀߟ-JO6$#<> ϥϯυUʹ͓͚ΔߦಈBͷ είΞใुͷظ ඪ४ภࠩºЋ είΞ͕࠷େͷߦಈΛ࣮ߦ ύϥϝʔλߋ৽
#BUDIMFBSOJOHGSPNMPHHFECBOEJUGFFECBDL ✦ CBOEJUGFFECBDLϩάΛֶͬͨश ✦ աڈͷߦಈબϙϦγʔʹΑΔόΠΞεͷิਖ਼͕ඞཁ ✦ ਪનγεςϜͷϩάجຊతʹCBOEJUGFFECBDL ✦ ΦϯϥΠϯֶशͰͳ͍ཧ༝ಛʹઆ໌͕ແ͔͕ͬͨ ✦
ϦΫΤετྔ͕ଟ͍αʔϏεͰόϯσΟοτΞϧΰϦζϜΛ͏߹ จͷखଓ͖௨ΓʹύϥϝʔλΛஞ࣍ߋ৽͢Δέʔεগͳ͍ͱࢥ͏ ✦ ΦϯϥΠϯֶशӡ༻͕େม
ิ#BOEJU'FFECBDLϩάΛֶͬͨश ✦ #BOEJU'FFECBDLϩάΛར༻ͨ͠৽͍͠ߦಈબϙϦγʔͷੑೳධՁΛߦͳ͏ ख๏ଘࡏ͢Δ ˠ0⒎1PMJDZ&WBMVBUJPO *OWFSTF1SPQFOTJUZ4DPSJOH %PVCMZ3PCVTU ʜ ✦
ੑೳධՁ͕࠷େʹͳΔ༷ʹߦಈબϙϦγʔΛֶश͢Εྑ͍ ✦ ߦಈΛBɺίϯςΩετΛYɺใुΛSͱͯ͠*14ͰධՁ͢Δ߹ КOFXͷ*14$PVOUFSGBDUVBM&TUJNBUPS
ߦಈબϙϦγʔͷֶश ϙϦγʔК͕ίϯςΩετYʹରͯ͠ߦಈZΛબͿ֬ είΞ ΛК ZcY ใुΛЎͱ͓͘ɻաڈͷϙϦγʔКͷείΞͱ؍ଌͨ͠ใुΛར༻ͯ͠ɺ৽ͨͳ ϙϦγʔКВΛֶश͢Δ ޱ಄ൃදεϥΠυ͔Βഈआ ͜ͷ··Ͱࢄͷ͕ग़ΔͷͰɺ<>Λࢀߟʹ͍͔ͭ͘ͷΛऔΓ͍Ε͍ͯΔͱͷઆ
໌͕͋ͬͨ
ଛࣦؔͷײతͳղऍ ใु͕ಘΒΕͨߦಈͰಛʹաڈͷϙϦγʔͷείΞ͕͍ߦಈͷείΞ্͕ ͕Εϩε͕Լ͕Δɻͭ·Γ͋·Γબ͠ͳ͔͕ͬͨΫϦοΫ͕ಘΒΕͨߦಈΛଟ͘ બͿ༷ʹֶश͢Δɻ ޱ಄ൃදεϥΠυ͔Βഈआ
ଛࣦؔͲ͔͜Βདྷͨͷ͔ ޱ಄ൃදεϥΠυͷࣜ3FGFSFODFʹ͋Δ 4XBNJOBUIBOΒ$PVOUFSGBDUVBMSJTL NJOJNJ[BUJPO-FBSOJOHGSPNMPHHFECBOEJU GFFECBDLz *$.- <>ʹ͓͚ΔఏҊख๏ ͷಋग़ͷং൫ʹ͋Δ*14ϕʔεͷࣜɻ ͳͷͰ࣮ࡍʹ͍ͬͯΔ
ͷ<>ͷఏҊख๏ͷࣜ ͩͱࢥΘΕΔ
$PVOUFSGBDUVBMSJTLNJOJNJ[BUJPO-FBSOJOHGSPNMPHHFE CBOEJUGFFECBDL *$.- <> ✦ *14ͷࢄ༝དྷͷΤϥʔΛόϯυ͢ΔVOCJBTFEFTUJNBUPSͰ͋Δ $3.$PVOUFSGBDUVBM3JTL.JOJNJ[BUJPOΛఏҊɺࢄΛਖ਼ଇԽ߲ʹ ✦ $3.Λֶश͢Δ܇࿅ΞϧΰϦζϜ10&.ͷఏҊ
ิ%PVCMZSPCVTUNFUIPEGPSDPVOUFSGBDUVBM MFBSOJOH Yuan, Bowen, et al. "Improving ad click prediction
by considering non-displayed events." Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019.
ΦϯϥΠϯධՁ ✦ ධՁࢦඪ$53 ✦ ͷ্͕֬ೝͰ͖ͨ ✦ ڠௐϑΟϧλϦϯάϕʔεͷख๏ͱൺֱ ✦ ڠௐϑΟϧλϦϯά3FMFWBODFॏࢹ ✦
ॳͷతୡͰ͖ͨ ✦ આ໌ແ͔͕ͬͨʮࠓ·Ͱʹਪન͠ͳ͔ͬͨΞΠςϜΛଟ͘ਪન͢ΔࣄͰΫ ϦοΫ͕૿͑ͨʯˠ*OTQJSBUJPOΛ༩͑Δࣄ͕Ͱ͖ͨͱղऍͰ͖ͦ͏ ✦ ΫϦοΫ͕ݮ͍ͬͯͳ͍ˠϏδωεࢦඪΛᆝଛ͍ͯ͠ͳ͍
ͷ࣭ٙԠͷൈਮ 2%PVCMZ3PCVTUͰͳ͘*14ʹͨ͠ͷԿނ ಛʹΦϑϥΠϯධՁͰࢄ͕ʹͳΒͳ͔͔ͬͨ "%PVCMZ3PCVTUߟ͑ͳ͔ͬͨɻ͔͠͠ࢄΛ͑ΔͨΊʹεί ΞͷΫϦοϐϯάΛߦͳͬͨ 2"#ςετΛि͚ؒͩΒͤͨ͜ͱͰɺϢʔβʔ͕׳Ε͠Μͩ " ͱҧͬ
͍ͯͨͨΊ # ͷ$53͕ߴ͘ͳͬͨՄೳੑ͋Δ͔ "ͦͷޙҰ؏ͯ͠ߴ͍$53Λ͍ࣔͯ͠Δ͔ΒɺͦΕແ͍ͱߟ͍͑ͯΔ 2୳ࡧΛߦͳ͏ࣄͰΫϦοΫͷݮগΈΒΕͳ͔͔ͬͨ "શ͘ٯͰ૿Ճͨ͠
ࢀߟจݙ <>5ÓUI #BMÂ[T 4BOEIZB4BDIJEBOBOEBO BOE&NJM4+SHFOTFO#BMBODJOH3FMFWBODFBOE %JTDPWFSZUP*OTQJSF$VTUPNFSTJOUIF*,&""QQ'PVSUFFOUI"$.$POGFSFODFPO 3FDPNNFOEFS4ZTUFNT <>-J -JIPOH FUBM"DPOUFYUVBMCBOEJUBQQSPBDIUPQFSTPOBMJ[FEOFXTBSUJDMF
SFDPNNFOEBUJPO1SPDFFEJOHTPGUIFUIJOUFSOBUJPOBMDPOGFSFODFPO8PSMEXJEFXFC <>4XBNJOBUIBO "EJUI BOE5IPSTUFO+PBDIJNT$PVOUFSGBDUVBMSJTLNJOJNJ[BUJPO-FBSOJOH GSPNMPHHFECBOEJUGFFECBDL*OUFSOBUJPOBM$POGFSFODFPO.BDIJOF-FBSOJOH <>:VBO #PXFO FUBM*NQSPWJOHBEDMJDLQSFEJDUJPOCZDPOTJEFSJOHOPOEJTQMBZFE FWFOUT1SPDFFEJOHTPGUIFUI"$.*OUFSOBUJPOBM$POGFSFODFPO*OGPSNBUJPOBOE ,OPXMFEHF.BOBHFNFOU