Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning Book 10その2 / deep learning book 1...
Search
himkt
January 29, 2018
Research
2
170
Deep Learning Book 10その2 / deep learning book 10 vol2
himkt
January 29, 2018
Tweet
Share
More Decks by himkt
See All by himkt
Linformer: paper reading
himkt
0
410
RoBERTa: paper reading
himkt
1
320
NLP SoTA 勉強会 / ner_2019
himkt
2
1.3k
自然言語処理 @ クックパッド / nlp at cookpad
himkt
1
490
Interpretable Machine Learning 6.3 - Prototypes and Criticisms
himkt
2
140
ニューラル固有表現抽出 / Neural Named Entity Recognition
himkt
3
680
ニューラル固有表現抽出器を実装してみる / PyNER
himkt
6
2k
Spacyでお手軽NLP / NLP with spacy
himkt
0
990
ふわふわ系列ラベリング / ner 2018
himkt
5
840
Other Decks in Research
See All in Research
尺度開発における質的研究アプローチ(自主企画シンポジウム7:認知行動療法における尺度開発のこれから)
litalicolab
0
390
機械学習による言語パフォーマンスの評価
langstat
6
860
Weekly AI Agents News! 10月号 プロダクト/ニュースのアーカイブ
masatoto
1
180
Weekly AI Agents News! 12月号 論文のアーカイブ
masatoto
0
130
精度を無視しない推薦多様化の評価指標
kuri8ive
1
340
LLM 시대의 Compliance: Safety & Security
huffon
0
490
Whoisの闇
hirachan
3
230
20240918 交通くまもとーく 未来の鉄道網編(太田恒平)
trafficbrain
0
440
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.4k
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
870
ベイズ的方法に基づく統計的因果推論の基礎
holyshun
0
710
Composed image retrieval for remote sensing
satai
2
150
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.8k
Optimizing for Happiness
mojombo
376
70k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
230
52k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.3k
Statistics for Hackers
jakevdp
797
220k
Fireside Chat
paigeccino
34
3.1k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
870
Producing Creativity
orderedlist
PRO
343
39k
GraphQLとの向き合い方2022年版
quramy
44
13k
Transcript
&DIP4UBUF/FUXPSLT&YQMJDJU.FNPSZ IJNLU!य़ΤϦΞ DEEP LEARNING BOOK 4FRVFODF.PEFMJOH3FDVSSFOUBOE3FDVSTJWF/FUT
&DIP4UBUF/FUXPSLT w 3//ʹֶ͓͍ͯश͕େมͳύϥϝʔλ w ӅΕӅΕ SFDVSSFOUXFJHIUT w ೖྗӅΕ JOQVUXFJHIUT
w &DIP4UBUF/FUXPSL w ӅΕӅΕॏΈΛݻఆ w ֶश͢Δͷʜ w ೖྗӅΕ JOQVUXFJHIUT w ӅΕग़ྗ PVUQVUXFJHIUT
&DIP4UBUF/FUXPSLT IUUQXXXTDIPMBSQFEJBPSHBSUJDMF&DIP@TUBUF@OFUXPSL
,FSOFMNBDIJOFͱͷྨࣅੑ w Χʔωϧ͕ͬͯΔ͜ͱͬͯʁ w ҙͷ͞ͷܥྻΛݻఆͷϕΫτϧࣸ͢ w ݻఆͷϕΫτϧΛ༻͍ͯྨث͕Λղ͘ w ͜ͷܗͷ߹ɼֶशͷج४ͷઃܭ͕༰қͰ͋Δ w
ग़ྗઢܗճؼͷ߹.4&ͰֶशͰ͖Δ w &4/TೖྗΛԿΒ͔ͷϕΫτϧʹࣸ͢ૢ࡞Λ͍ͯ͠Δ w தͷॏΈݻఆ͍ͯ͠Δ ͍͔ʹաڈͷใΛ๛ʹؚΉදݱ͕ಘΒΕΔ ॏΈΛઃఆ͢ΕΑ͍͔ʁ શવҙຯ͕Θ͔Βͣʜ 3//ΛಈతγεςϜͱΈͳ͢ γεςϜ͕҆ఆ͢ΔΑ͏ͳॏΈΛઃఆ͢Δ
-FBLZ6OJUTBOE0UIFS4USBUFHJFTGPS.VMUJQMF5JNF4DBMF w աڈͷใΛ͑ΔͨΊͷ "EEJOH4LJQ$POOFDUJPOTUISPVHI5JNF w ޯͷফࣦͷ͕͘ͳΔ w രൃݩͷ3//ͱಉ͡Ͱൃੜ͢Δ
-FBLZ6OJUTBOEB4QFDUSVNPG%J⒎FSFOU5JNF4DBMFT w աڈͷใΛͲͷఔ͔͢Λ੍ޚ͢Δ 3FNPWJOH$POOFDUJPOT w ͍࣌ࠁͰͷґଘΛ͍࣌ࠁͰͷґଘʹஔ͖͑Δ
-FBLZ6OJUT w աڈͷใΛͲͷ͘Β͍͔͢Λௐ͢Δ w ҠಈฏۉͷΑ͏ͳ;Δ·͍Λ͢Δ w Ћ͕େ͖͍ ʹ͍ۙ աڈͷใΛΑΓอଘ͢Δ w
Ћ͕খ͍͞ ʹ͍ۙ աڈͷใΛ͙͢ʹࣺͯΔ w Ћదʹܾఆ͢ΔϋΠύʔύϥϝʔλ µ(t) ↵µ(t 1) + (1 ↵)v(t)
-POH4IPSU5FSN.FNPSZ w ࣗݾϧʔϓΛಋೖ͢Δ͜ͱͰޯ͕ফ͑ʹ͘͘͢Δ IUUQDPMBIHJUIVCJPQPTUT6OEFSTUBOEJOH-45.T 3// -45.
(BUFE3FDVSSFOU6OJUT w ٙ-45.ෳࡶ͗͢ΔͷͰͳ͍͔ʁ w (36-45.ΑΓߴɾ-45.ͱಉͷੑೳ w ͲͪΒ͕ྑ͍͔λεΫʹΑΔ -45. (36
IUUQTJTBBDDIBOHIBVHJUIVCJP-45.BOE(36'PSNVMB4VNNBSZ
ࣜతʹൺֱ͢ΔʢόΠΞεΛແࢹʣ -45. (36 zt = (xtUz + ht 1Wz)
rt = (xtUr + ht 1Wr) ˜ ht = tanh ⇣ xt + Uh + (rt ht 1)Wh ⌘ ht = (1 zt) ht 1 + zt ˜ ht it = (xtUi + ht 1Wi) ft = (xtUf + ht 1Wf ) ot = (xtUo + ht 1Wg) ˜ Ct = tanh (xtUg + ht 1Wg) Ct = (ft Ct 1 + it ˜ Ct) ht = tanh (Ct) ot (36Ͱೖྗήʔτͱ٫ήʔτ͕౷߹͞Ε͍ͯΔ
0QUJNJ[BUJPOGPS-POH5FSN%FQFOEFODJFT w 3//Λϕʔεͱͨ͠χϡʔϥϧωοτϫʔΫͷඍ w ඇৗʹେ͖ͳΛͱΔPS w ඇৗʹখ͞ͳΛͱΔ w ಛʹɼޯ͕ඇৗʹେ͖ͳͱ͖ʹͲ͏͢Εྑ͍͔ʁ
ޯͷΫϦοϐϯά ޯͷਖ਼نԽ
$MJQQJOH(SBEJFOU w ޯ͕ඇৗʹ େ͖͍cখ͍͞ ͱʁ w ͍͍ͩͨฏΒ͚ͩͲͱ͖Ͳ͖֑͕͋Δ IUUQXXXEFFQMFBSOJOHCPPLPSHMFDUVSF@TMJEFTIUNM
$MJQQJOH(SBEJFOU w ޯ๏ϕʔεͷख๏ʹΑΔͱʜ w ֑ͷपΓͰ͕ਧ͖ඈΜͰ͠·͏ ޯരൃ w ޯ͕େ͖͘ͳΓ͗ͨ͢ΒޯͷϊϧϜͰׂΔ w
ޯΛHͱͯ͠ʜ w WϋΠύʔύϥϝʔλ ࣗવݴޠॲཧͩͱ͕ଟ͍ g ( gv ||g|| (||g|| > v) g (otherwise)
3FHVMBSJ[JOHUP&ODPVSBHF*OGPSNBUJPO'MPX w ਖ਼ଇԽ߲Λಋೖ͢Δ͜ͱͰʮJOGPSNBUJPOqPXʯΛଅਐ w ͜ͷ߲ͷܭࢉ͍͕͠ɼۙࣅ͕ఏҊ͞Ε͍ͯΔ w $MJQQJOHͱΈ߹ΘͤΔ͜ͱͰهԱͰ͖Δڑ͕৳ͼΔ ⌦ =
X t ⇣||(rh(t) L) @h(t) @h(t 1) || ||(rh(t) L)|| 1 ⌘2
&YQMJDJU.FNPSZ w χϡʔϥϧωοτϫʔΫʜ w ҉తͳใͷอ࣋ಘҙ w ໌ࣔతͳใ ࣄ࣮ ͷอ࣋ۤख w
໌ࣔతͳใΛอ࣋͠ɼਪʹ׆༻͢Δߏ ʢϫʔΩϯάϝϞϦͷಋೖʣ w .FNPSZ/FUXPSLT w /FVSBM5VSJOH.BDIJOF
"TDIFNBUJDPGBOFUXPSLXJUIBOFYQMJDJUNFNPSZ IUUQXXXEFFQMFBSOJOHCPPLPSHMFDUVSF@TMJEFTIUNM
"TDIFNBUJDPGBOFUXPSLXJUIBOFYQMJDJUNFNPSZ w ਖ਼֬ͳϝϞϦͷΞυϨεΛग़ྗ͢Δͷ͍͠ w ଟ͘ͷϝϞϦηϧͷॏΈ͖ฏۉΛͱΔ w ॏΈιϑτϚοΫεͳͲͰ࡞Δ ʢͰ͖Δ͚ͩҰՕॴͷϝϞϦΛࢀর͢ΔΑ͏ʹʣ w ϝϞϦηϧεΧϥΑΓϕΫτϧͷํ͕ྑ͍
w ίϯςϯπϕʔεΞυϨογϯά͕ՄೳʹͳΔ w ʮl8FBMMMJWFJOBZFMMPXTVCNBSJOFzΛؚΉՎࢺΛݟ͚ͭΔʯ w ʢϩέʔγϣϯϕʔεΞυϨογϯάͱʁʣ w ʮεϩοτ347ʹ֨ೲ͞Ε͍ͯΔՎࢺΛऔಘ͢Δʯ w ʢΞυϨογϯάΞςϯγϣϯͱಉ͡ܗࣜʣ