Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning Book 10その2 / deep learning book 1...
Search
himkt
January 29, 2018
Research
2
200
Deep Learning Book 10その2 / deep learning book 10 vol2
himkt
January 29, 2018
Tweet
Share
More Decks by himkt
See All by himkt
Linformer: paper reading
himkt
0
570
RoBERTa: paper reading
himkt
1
380
NLP SoTA 勉強会 / ner_2019
himkt
2
1.4k
自然言語処理 @ クックパッド / nlp at cookpad
himkt
1
550
Interpretable Machine Learning 6.3 - Prototypes and Criticisms
himkt
2
170
ニューラル固有表現抽出 / Neural Named Entity Recognition
himkt
3
770
ニューラル固有表現抽出器を実装してみる / PyNER
himkt
6
2.2k
Spacyでお手軽NLP / NLP with spacy
himkt
0
1.1k
ふわふわ系列ラベリング / ner 2018
himkt
5
860
Other Decks in Research
See All in Research
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
810
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
300
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
270
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
170
音声感情認識技術の進展と展望
nagase
0
370
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
600
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
300
説明可能な機械学習と数理最適化
kelicht
2
630
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
230
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
250
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
170
POI: Proof of Identity
katsyoshi
0
110
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Mobile First: as difficult as doing things right
swwweet
225
10k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
80
The Language of Interfaces
destraynor
162
25k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Fireside Chat
paigeccino
41
3.7k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Site-Speed That Sticks
csswizardry
13
990
Transcript
&DIP4UBUF/FUXPSLT&YQMJDJU.FNPSZ IJNLU!य़ΤϦΞ DEEP LEARNING BOOK 4FRVFODF.PEFMJOH3FDVSSFOUBOE3FDVSTJWF/FUT
&DIP4UBUF/FUXPSLT w 3//ʹֶ͓͍ͯश͕େมͳύϥϝʔλ w ӅΕӅΕ SFDVSSFOUXFJHIUT w ೖྗӅΕ JOQVUXFJHIUT
w &DIP4UBUF/FUXPSL w ӅΕӅΕॏΈΛݻఆ w ֶश͢Δͷʜ w ೖྗӅΕ JOQVUXFJHIUT w ӅΕग़ྗ PVUQVUXFJHIUT
&DIP4UBUF/FUXPSLT IUUQXXXTDIPMBSQFEJBPSHBSUJDMF&DIP@TUBUF@OFUXPSL
,FSOFMNBDIJOFͱͷྨࣅੑ w Χʔωϧ͕ͬͯΔ͜ͱͬͯʁ w ҙͷ͞ͷܥྻΛݻఆͷϕΫτϧࣸ͢ w ݻఆͷϕΫτϧΛ༻͍ͯྨث͕Λղ͘ w ͜ͷܗͷ߹ɼֶशͷج४ͷઃܭ͕༰қͰ͋Δ w
ग़ྗઢܗճؼͷ߹.4&ͰֶशͰ͖Δ w &4/TೖྗΛԿΒ͔ͷϕΫτϧʹࣸ͢ૢ࡞Λ͍ͯ͠Δ w தͷॏΈݻఆ͍ͯ͠Δ ͍͔ʹաڈͷใΛ๛ʹؚΉදݱ͕ಘΒΕΔ ॏΈΛઃఆ͢ΕΑ͍͔ʁ શવҙຯ͕Θ͔Βͣʜ 3//ΛಈతγεςϜͱΈͳ͢ γεςϜ͕҆ఆ͢ΔΑ͏ͳॏΈΛઃఆ͢Δ
-FBLZ6OJUTBOE0UIFS4USBUFHJFTGPS.VMUJQMF5JNF4DBMF w աڈͷใΛ͑ΔͨΊͷ "EEJOH4LJQ$POOFDUJPOTUISPVHI5JNF w ޯͷফࣦͷ͕͘ͳΔ w രൃݩͷ3//ͱಉ͡Ͱൃੜ͢Δ
-FBLZ6OJUTBOEB4QFDUSVNPG%J⒎FSFOU5JNF4DBMFT w աڈͷใΛͲͷఔ͔͢Λ੍ޚ͢Δ 3FNPWJOH$POOFDUJPOT w ͍࣌ࠁͰͷґଘΛ͍࣌ࠁͰͷґଘʹஔ͖͑Δ
-FBLZ6OJUT w աڈͷใΛͲͷ͘Β͍͔͢Λௐ͢Δ w ҠಈฏۉͷΑ͏ͳ;Δ·͍Λ͢Δ w Ћ͕େ͖͍ ʹ͍ۙ աڈͷใΛΑΓอଘ͢Δ w
Ћ͕খ͍͞ ʹ͍ۙ աڈͷใΛ͙͢ʹࣺͯΔ w Ћదʹܾఆ͢ΔϋΠύʔύϥϝʔλ µ(t) ↵µ(t 1) + (1 ↵)v(t)
-POH4IPSU5FSN.FNPSZ w ࣗݾϧʔϓΛಋೖ͢Δ͜ͱͰޯ͕ফ͑ʹ͘͘͢Δ IUUQDPMBIHJUIVCJPQPTUT6OEFSTUBOEJOH-45.T 3// -45.
(BUFE3FDVSSFOU6OJUT w ٙ-45.ෳࡶ͗͢ΔͷͰͳ͍͔ʁ w (36-45.ΑΓߴɾ-45.ͱಉͷੑೳ w ͲͪΒ͕ྑ͍͔λεΫʹΑΔ -45. (36
IUUQTJTBBDDIBOHIBVHJUIVCJP-45.BOE(36'PSNVMB4VNNBSZ
ࣜతʹൺֱ͢ΔʢόΠΞεΛແࢹʣ -45. (36 zt = (xtUz + ht 1Wz)
rt = (xtUr + ht 1Wr) ˜ ht = tanh ⇣ xt + Uh + (rt ht 1)Wh ⌘ ht = (1 zt) ht 1 + zt ˜ ht it = (xtUi + ht 1Wi) ft = (xtUf + ht 1Wf ) ot = (xtUo + ht 1Wg) ˜ Ct = tanh (xtUg + ht 1Wg) Ct = (ft Ct 1 + it ˜ Ct) ht = tanh (Ct) ot (36Ͱೖྗήʔτͱ٫ήʔτ͕౷߹͞Ε͍ͯΔ
0QUJNJ[BUJPOGPS-POH5FSN%FQFOEFODJFT w 3//Λϕʔεͱͨ͠χϡʔϥϧωοτϫʔΫͷඍ w ඇৗʹେ͖ͳΛͱΔPS w ඇৗʹখ͞ͳΛͱΔ w ಛʹɼޯ͕ඇৗʹେ͖ͳͱ͖ʹͲ͏͢Εྑ͍͔ʁ
ޯͷΫϦοϐϯά ޯͷਖ਼نԽ
$MJQQJOH(SBEJFOU w ޯ͕ඇৗʹ େ͖͍cখ͍͞ ͱʁ w ͍͍ͩͨฏΒ͚ͩͲͱ͖Ͳ͖֑͕͋Δ IUUQXXXEFFQMFBSOJOHCPPLPSHMFDUVSF@TMJEFTIUNM
$MJQQJOH(SBEJFOU w ޯ๏ϕʔεͷख๏ʹΑΔͱʜ w ֑ͷपΓͰ͕ਧ͖ඈΜͰ͠·͏ ޯരൃ w ޯ͕େ͖͘ͳΓ͗ͨ͢ΒޯͷϊϧϜͰׂΔ w
ޯΛHͱͯ͠ʜ w WϋΠύʔύϥϝʔλ ࣗવݴޠॲཧͩͱ͕ଟ͍ g ( gv ||g|| (||g|| > v) g (otherwise)
3FHVMBSJ[JOHUP&ODPVSBHF*OGPSNBUJPO'MPX w ਖ਼ଇԽ߲Λಋೖ͢Δ͜ͱͰʮJOGPSNBUJPOqPXʯΛଅਐ w ͜ͷ߲ͷܭࢉ͍͕͠ɼۙࣅ͕ఏҊ͞Ε͍ͯΔ w $MJQQJOHͱΈ߹ΘͤΔ͜ͱͰهԱͰ͖Δڑ͕৳ͼΔ ⌦ =
X t ⇣||(rh(t) L) @h(t) @h(t 1) || ||(rh(t) L)|| 1 ⌘2
&YQMJDJU.FNPSZ w χϡʔϥϧωοτϫʔΫʜ w ҉తͳใͷอ࣋ಘҙ w ໌ࣔతͳใ ࣄ࣮ ͷอ࣋ۤख w
໌ࣔతͳใΛอ࣋͠ɼਪʹ׆༻͢Δߏ ʢϫʔΩϯάϝϞϦͷಋೖʣ w .FNPSZ/FUXPSLT w /FVSBM5VSJOH.BDIJOF
"TDIFNBUJDPGBOFUXPSLXJUIBOFYQMJDJUNFNPSZ IUUQXXXEFFQMFBSOJOHCPPLPSHMFDUVSF@TMJEFTIUNM
"TDIFNBUJDPGBOFUXPSLXJUIBOFYQMJDJUNFNPSZ w ਖ਼֬ͳϝϞϦͷΞυϨεΛग़ྗ͢Δͷ͍͠ w ଟ͘ͷϝϞϦηϧͷॏΈ͖ฏۉΛͱΔ w ॏΈιϑτϚοΫεͳͲͰ࡞Δ ʢͰ͖Δ͚ͩҰՕॴͷϝϞϦΛࢀর͢ΔΑ͏ʹʣ w ϝϞϦηϧεΧϥΑΓϕΫτϧͷํ͕ྑ͍
w ίϯςϯπϕʔεΞυϨογϯά͕ՄೳʹͳΔ w ʮl8FBMMMJWFJOBZFMMPXTVCNBSJOFzΛؚΉՎࢺΛݟ͚ͭΔʯ w ʢϩέʔγϣϯϕʔεΞυϨογϯάͱʁʣ w ʮεϩοτ347ʹ֨ೲ͞Ε͍ͯΔՎࢺΛऔಘ͢Δʯ w ʢΞυϨογϯάΞςϯγϣϯͱಉ͡ܗࣜʣ