Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DEIM2021 Twitterにおけるフェイクニュース拡散モデルの提案
Search
taichi_murayama
March 01, 2021
Research
0
580
DEIM2021 Twitterにおけるフェイクニュース拡散モデルの提案
DEIM2021 「Twitterにおけるフェイクニュース拡散モデルの提案」の発表スライド
taichi_murayama
March 01, 2021
Tweet
Share
More Decks by taichi_murayama
See All by taichi_murayama
デジタル社会における陰謀論の課題とその対策
hkefka385
0
25
サイバー空間におけるフェイクニュースの広がりとその対策
hkefka385
0
20
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
60
ウェブ・ソーシャルメディア論文読み会 第19回: Multidimensional political polarization in online social networks (Physical Review Research, 2024)
hkefka385
0
110
2024年度 分野の全体像と論文の探し方
hkefka385
0
110
2024年度 研究の進め方
hkefka385
0
760
2024年度 研究室との接し方
hkefka385
1
110
2024年度 連絡ツールDiscordの使い方
hkefka385
0
79
ウェブ・ソーシャルメディア論文読み会 第15回: Twitter (X) use predicts substantial changes in well-being, polarization, sense of belonging, and outrage
hkefka385
0
360
Other Decks in Research
See All in Research
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
270
打率7割を実現する、プロダクトディスカバリーの7つの極意(pmconf2024)
geshi0820
0
310
Gemini と Looker で営業DX をドライブする / Driving Sales DX with Gemini and Looker
sansan_randd
0
120
コミュニティドライブプロジェクト
smartfukushilab1
0
190
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
24
5.9k
研究を支える拡張性の高い ワークフローツールの提案 / Proposal of highly expandable workflow tools to support research
linyows
0
310
Composed image retrieval for remote sensing
satai
3
240
Elix, CBI2024, スポンサードセッション, Molecular Glue研究の展望:近年の進展とAI活用の可能性
elix
0
130
한국어 오픈소스 거대 언어 모델의 가능성: 새로운 시대의 언어 이해와 생성
inureyes
PRO
0
220
CUNY DHI_Lightning Talks_2024
digitalfellow
0
460
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
420
Weekly AI Agents News! 10月号 論文のアーカイブ
masatoto
1
510
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
630
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
It's Worth the Effort
3n
184
28k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
560
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
980
Building Your Own Lightsaber
phodgson
104
6.2k
Adopting Sorbet at Scale
ufuk
74
9.2k
Transcript
5XJUUFSʹ͓͚Δ ϑΣΠΫχϡʔε֦ࢄϞσϧͷఏҊ ଜࢁଠҰɼएٶᠳࢠɼߥӳ࣏ɼখྛ྄ଠ ಸྑઌՊֶٕज़େֶӃେֶ ౦ژେֶ DEIM2021 H33-5
2 l ιʔγϟϧϝσΟΞ্ʹ͓͚Δχϡʔεಡऀͷ૿Ճ l ΞϝϦΧͰͷ͕ιʔγϟϧϝσΟΞ͔Β χϡʔεΛऔಘ l ༷ʑͳχϡʔεΛଟ͘ͷϢʔβʹΑͬͯਫ਼ࠪͤ͞Εͣʹ ֦ࢄɼதʹޡͬͨχϡʔε ϑΣΠΫχϡʔε
l ϑΣΠΫχϡʔεͷఆٛɾ l ͦͷχϡʔεͷഎޙʹଘࡏ͢ΔҙਤҙຯʹؔΘΒͣɼޡͬͨใ͕4/4ͳ ͲΛ௨ͯ͡ଟ͘ͷਓʑʹ·Δχϡʔε l ଟ͘ͷϑΣΠΫχϡʔε͕ιʔγϟϧϝσΟΞͰ֦ࢄ͞Εɼຽओओٛ ιʔγϟϧϝσΟΞͷΤίγεςϜɼδϟʔφϦζϜɼܦࡁͱ͍༷ͬͨʑͳ ʹଟ͘ͷӨڹ എܠ from: Pew Research Center
3 ϑΣΠΫχϡʔεͷྫ (1/2) • ܦࡁɿ "TTPDJBUFE1SFTTࣾͷ5XJUUFSΞΧϯτͷͬऔΓʹΑ ΔϑΣΠΫχϡʔε • ʮϗϫΠτϋεͰരൃ͕ճ͋ΓɺΦόϚେ౷ྖ͕ෛইͨ͠ʯͱ͍͏ ϑΣΠΫχϡʔε
• ͦͷӨڹͰɼμۀฏۉגՁ͕ؒ Ͱٸམ എܠ From: https://www.businessinsider.com/ap-hacked-obama-injured-white-house-explosions-2013-4 From: https://www.marketwatch.com/story/this-day-in-history-hacked-ap-tweet-about-white-house -explosions-triggers-panic-2018-04-23
4 ϑΣΠΫχϡʔεͷྫ (2/2) • ݈߁ɿ$07*%ؔͷϑΣΠΫχϡʔε • 7JUBNJO$Ͱίϩφ༧͕Ͱ͖Δ • (ωοτϫʔΫʹΑͬͯίϩφ͕·Δ എܠ
From: https://k-tai.watch.impress.co.jp/docs/news/1246278.html
5 ຊݚڀͷత • 5XJUUFSͰͷϑΣΠΫχϡʔεͷΧεέʔυͷϞσϧԽ • ϑΣΠΫχϡʔεͷΧεέʔυΛཧղ͢Δ͜ͱɼϑΣΠΫχϡʔεͷݕग़ͳͲͷԠ༻ λεΫʹ༗༻ • χϡʔεʹؔ͢ΔϢʔβͷߘ࣌ؒͱϑΥϩϫʔͷใΛ׆༻ͯ͠ɼ֦ࢄͷ͢͠͞Λ ϞσϦϯά
എܠ Breaking News!! Discovery a huge cat Fake News Timeline ユーザによる投稿と拡散 2020/01/01 12:00 この猫でかすぎ! http://.... Modeling 投稿確率
6 ϑΣΠΫχϡʔεͷΧεέʔυϞσϦϯάͷԾઆ • ϑΣΠΫχϡʔεͷΧεέʔυɼஈ֊ͷΧεέʔυʹΑͬͯߏ • ͭͷΧεέʔυỚ௨ৗͷχϡʔεͷੑ࣭Λ࣋ͬͨΧεέʔυ • ͭͷΧεέʔυỚݩͷχϡʔε͕ϑΣΠΫͩͱٙΘΕͨΓɼࢦఠ͞Εͨ͜ͱʹΑͬͯ గਖ਼࣌ࠁ!"͔Βੜ͡Δగਖ਼ͷੑ࣭Λ࣋ͬͨΧεέʔυ ఏҊϞσϧ
通常のニュースの カスケード 訂正の性質を持った カスケード
7 ϕʔεϞσϧTime-Dependent Hawkes Process ఏҊϞσϧ l )BXLFT1SPDFTTͱ͍͏աఔ Ϟσϧͷछ l աڈͷΠϕϯτͱܦա͔࣌ؒΒ
࣍ͷΠϕϯτൃੜ֬Λࢉग़ From: A Tutorial on Hawkes Processes for Events in Social Media イベント発⽣ time イベント発⽣確率
8 ϕʔεϞσϧTime-Dependent Hawkes Process ఏҊϞσϧ Timeline ユーザによる投稿と拡散 Modeling t, t
+ ∆% Ͱͷߘൃੜ֬ = λ % ∆% = ((%) ∑ ,:./0. 1, 2(% − %, ) ((%): 時間tにおける感染率, 1, : i番⽬のイベントでの観測者(フォロワー数) %, : i番⽬のイベントの投稿時間 2: どの程度記憶しているかを表した関数 感染率 どれだけの⼈が覚えているか Bใͷڧ͞ ؔ৺ͷߴ͞ S૬ରৼ෯ 56ৼಈͷλΠϛϯά 7ݮਰͷఔ ( % = 8 1 − : sin 2? @A % + 56 BC./E
9 ఏҊϞσϧ
Time (hour) ade ) cade ion) s Modeling Time (hour) Posting Activity ! " = $% " ℎ% " + $( (")ℎ( (") "+ 訂正時間"+でカスケードを分割 $% " ℎ% " $( (")ℎ( (") ℎ% " = , -:/012-3(/, /5) 6- 7(" − "- ) ℎ( " = , -:/5 1 /0 1/ 6- 7(" − "- ) $(") $("): 時間tにおける感染率, 6- : i番⽬のイベントでの観測者 (フォロワー数) "- : i番⽬のイベントの投稿時間 7: どの程度記憶しているかを表した関数
10 σʔληοτ • 3FDFOU'BLF/FXT 3'/ • ΞϝϦΧͷϑΣΠΫχϡʔεݕূαΠτʮ1PMJUJGBDUʯͱʮ4OPQFTʯʹΑͬͯ ݄ r ݄ʹใࠂ͞ΕͨϑΣΠΫχϡʔεΛऩू
• ΩʔϫʔυϕʔεͰ݅Ҏ্ͷߘ͔ͭ࣌ؒҎ্ͷߘ͕ଘࡏͨ͠ ݅ͷϑΣΠΫχϡʔε • 'BLF/FXTJO5PIPLVFBSUIRVBLF 5PIPLV • ݄͔Β݄·Ͱͷ౦ຊେࡂʹؔ͢ΔϑΣΠΫχϡʔεΛऩू IUUQTCMPHPTDPNBSUJDMF • ΩʔϫʔυΛ༻͍ͯ୳ࡧͨ݅͠Ҏ্ͷߘ͔ͭ࣌ؒҎ্ͷߘ͕ଘࡏͨ͠ ݅ͷϑΣΠΫχϡʔε ఏҊϞσϧͷݕূ
11 ࣮ݧઃఆ ϑΣΠΫχϡʔεͷߘΛ༧ଌ • ͭͷϑΣΠΫχϡʔεσʔληοτͷ֤χϡʔεΛରʹ ϞσϦϯάΛߦ͍ɼকདྷͷߘΛ༧ଌ • σʔλͷ؍࣌ؒ5ʹର͠ɼ ϞσϦϯάظؒΛ< 5>ɼςετظؒΛ<5
5>ͱͯ͠ઃఆ • ͭͷධՁࢦඪ༧ଌͷִؒΛ࣌ؒͱͯ͠ߘΛධՁ • .FBO&SSPS༧ଌͱਅͷͷࠩͷฏۉ • .FEJBO&SSPSࠩͷதԝ ఏҊϞσϧͷݕূ
12 ࣮ݧ݁ՌɿධՁࢦඪ ఏҊϞσϧͷධՁ 3'/ɼ5PIPLVσʔληοτͱʹఏҊख๏͕ଞͷख๏ΑΓ ߴ͍ਫ਼Λୡ 3'/ͷɼ5PIPLVͷ
13 ࣮ݧ݁Ռɿྦྷੵߘͷ࣌ܥྻ ఏҊϞσϧͷධՁ • Ϛθϯλ͕ఏҊख๏ɼࠇ͕࣮ଌ • ఏҊख๏͕࣮ଌʹ͍ۙ༧ଌߘΛୡ
14 ࣮ݧ݁Ռɿਪఆ͞Εͨύϥϝʔλͷ ఏҊϞσϧͷධՁ l 1BSBNFUFS! ஈ֊ͷΧεέʔυʹ͋ͨΔޡΓͱ໌Β͔ʹ ͳͬͨχϡʔεͷ֦ࢄɼஈ֊ʹ͋ͨΔ֦ࢄΑΓऑ͍ l 3'/σʔληοτͷɼ5PIPLVσʔληοτͷ l
గਖ਼࣌ؒ"#྆ํͷσʔληοτͰ࣌ؒޙఔ $ " = & 1 − ) sin 2. /0 " + 23 456/8
15 గਖ਼࣌ؒ!"ͷଥੑͷݕূ ఏҊϞσϧͷߟ l గਖ਼࣌ؒ!"લޙͷߘςΩετΛ֬ೝ l ఏҊϞσϧͰగਖ਼࣌ؒ!"ΛదʹݕͰ͖͍ͯΔ ͔Ͳ͏͔ΛߘͷςΩετͷ༰Ͱݕূ l σϚగਖ਼Λҙຯ͢ΔޠΛΧϯτ
1つ⽬のカスケード⁚ 通常のニュースの性質 を持つカスケード 2つ⽬のカスケード⁚ 訂正の性質を持つ カスケード
16 గਖ਼࣌ؒ!"ͷଥੑͷݕূɿWord cloud ఏҊϞσϧͷߟ ྫỚʮτϧί͕ԯԁຊʹدʯͱ͍͏ϑΣΠΫχϡʔε l గਖ਼࣌ؒ!" = 37લޙͷߘςΩετΛ8PSEDMPVEͰൺֱ l
!"ҎલͰʮࠃʯͱ͍ͬͨͦͷχϡʔεʹؔ͢Δޠ l !"ҎޙͰʮʯʹؔ͢ΔχϡʔεͱҰׅͰσϚͱࢦఠ
17 ·ͱΊ l 5XJUUFSͰͷϑΣΠΫχϡʔεͷగਖ਼ʹΑͬͯੜ͡Δஈ֊ͷ ΧεέʔυΛϞσϧԽ l ఏҊϞσϧʹΑΔকདྷͷߘ༧ଌͰߴ͍ਫ਼Λୡ l ఏҊϞσϧͰݕग़Ͱ͖ͨగਖ਼࣌ؒͱɼ5XJUUFSͷߘ༰Λ ॏͶͯൺֱͯ͠ΈΔͱɼగਖ਼࣌ؒҎ߱ʹʮϑΣΠΫχϡʔεΛగ
ਖ਼͢Δҙਤʯͷߘ͕ଟ͘ݟΒΕͨ ͓ΘΓʹ