Upgrade to Pro — share decks privately, control downloads, hide ads and more …

サイバー空間におけるフェイクニュースの広がりとその対策

 サイバー空間におけるフェイクニュースの広がりとその対策

ICT-ISAC 大阪WG-Dayで講演した「サイバー空間におけるフェイクニュースの広がりとその対策」の資料です。

taichi_murayama

January 23, 2025
Tweet

More Decks by taichi_murayama

Other Decks in Research

Transcript

  1. 4

  2. 5 ϑΣΠΫχϡʔεͷ൙ཞ എܠ બڍલϲ݄Ͱ໿ສճɺީิऀਓ τϥϯϓࢯ ΫϦϯτϯࢯ ͷϑΣΠΫχϡʔε͕'BDFCPPLͰ֦ࢄ Allcott, Hunt, and

    Matthew Gentzkow. "Social media and fake news in the 2016 election." Journal of economic perspectives 31.2 (2017): 211-36.
  3. 14 ϑΣΠΫχϡʔεͷ֦ࢄ͸଎ͨ͘͘͞Μ఻ΘΔ ιʔγϟϧϝσΟΞͱϑΣΠΫχϡʔε Vosoughi, Soroush, Deb Roy, and Sinan Aral.

    "The spread of true and false news online." science 359.6380 (2018): 1146-1151. https://www.soumu.go.jp/main_content/000630427.pdf l ಛʹ੓࣏ɺϏδωεɺઓ ૪ɺՊֶͳͲͷ࿩୊Ͱ֦ ࢄ͞Ε΍͍͢܏޲ l #PUͷޮՌ͸ҙ֎ͱখ͍͞
  4. 15 ϑΣΠΫχϡʔεΛ֦ࢄ͢ΔϢʔβͱ͸ʁ ιʔγϟϧϝσΟΞͱϑΣΠΫχϡʔε Yamaguchi, Shinichi, and Tsukasa Tanihara. "Relationship between

    misinformation spreading behaviour and true/false judgments and literacy: an empirical analysis of COVID-19 vaccine and political misinformation in Japan." Global Knowledge, Memory and Communication (2023). ౰વ͕ͩɺͦͷχϡʔεΛʮਖ਼͍͠ʯͱ ৴ͨ͡ΓϝσΟΞɾϦςϥγʔ͕௿͍ਓ ͕֦ࢄ͠қ͍ ϑΣΠΫχϡʔεͷڞ༗ͷ͸ͷ ϢʔβʹΑΔ΋ͷͰɺߴྸऀ΍ӈدΓͷ ੓࣏ࢥ૝ͷϢʔβ͕ڞ༗͠΍͍͢ Grinberg, Nir, et al. "Fake news on Twitter during the 2016 US presidential election." Science 363.6425 (2019): 374-378.
  5. 17 ϑΣΠΫχϡʔεΛݕग़Ϟσϧͷྫ ιʔγϟϧϝσΟΞͱϑΣΠΫχϡʔε l ςΩετ৘ใ΍ڞ༗ͨ͠Ϣʔ βͷಛ௃Λ༻͍ͯɺϑΣΠΫ χϡʔε͔Ͳ͏͔Λ൑ఆ l ൑ఆʹ஫໨ͨ͠ՕॴΛՄࢹԽ ʢઆ໌ੑͷ෇༩ʣ

    Lu, Yi-Ju, and Cheng-Te Li. "GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media." Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020.
  6. 18 ϑΣΠΫχϡʔεΛݕग़Ϟσϧͷ՝୊ ιʔγϟϧϝσΟΞͱϑΣΠΫχϡʔε l ೥ͷσʔλͰߏஙͨ͠ϑΣΠΫχϡʔεݕग़Ϟσϧ͕೥ ͷσʔλʹରԠͰ͖Δͷ͔ʁ EJBDISPOJDCJBTͷଘࡏ l ϞσϧΛຖ೥ߋ৽͠ଓ͚Δͱ͍͏ͷ͸େม l

    ߏங͞ΕΔػցֶशϞσϧͷ൑அ͸ਖ਼͍͠Θ͚Ͱ͸ͳ͍ l ਖ਼͍͠৘ใΛϑΣΠΫͱࢦఠ͢Δةݥੑʹ͍ͭͯ ِཅੑ΍ِӄੑ l ػցֶशϞσϧͷϒϥοΫϘοΫε໰୊ l ൑அͷࠜڌ΍࢓૊Έ͕Θ͔Βͳ͍ͱਓؒ͸ͦͷϞσϧΛ৴͖͡Εͳ͍ l େྔʹଘࡏ͢Δ౤ߘΛͲͷΑ͏ʹࡹ͔͘
  7. 19 (VBSEJBOͷ׆༻ ιʔγϟϧϝσΟΞͱϑΣΠΫχϡʔε       

     l (VBSEJBOϑΣΠΫχϡʔεΛࢦఠ͢Δ Ϣʔβ l (VBSEJBOΛࣗಈతʹൃݟɺੜ੒͢Δ͜ ͱͰϑΝΫτνΣοΫίετͷ࡟ݮ l గਖ਼Ϣʔβ͕ެࣜΞΧ΢ϯτͳͲͰ͋Δ ͱޡใͷࢦఠΛ৴͡ΔՄೳੑ͕Ξοϓ Hannak, Aniko, et al. "Get back! you don’t know me like that: The social mediation of fact checking interventions in twitter conversations." Eighth International AAAI Conference on Weblogs and Social Media. 2014. Vo, Nguyen, and Kyumin Lee. "Learning from fact-checkers: analysis and generation of fact-checking language." Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2019. Seo, Haeseung, et al. "If You Have a Reliable Source, Say Something: Effects of Correction Comments on COVID-19 Misinformation." Proceedings of the International AAAI Conference on Web and Social Media. Vol. 16. 2022.
  8. 29 όοΫϑΝΠΞʔޮՌ ͳͥਓʑ͸ϑΣΠΫχϡʔεΛ৴ͯ͡͠·͏ͷ͔ʁ l ݸਓͷ৴೦ʹ߹Θͳ͍గਖ਼Λ༩͑ΒΕͨ ͱͯ͠΋ɺͦͷగਖ਼Λ৴ͣ͡ɺ͔͑ͬͯ గਖ਼ʹΑͬͯݸਓͷ৴೦ΛڧΊΔޮՌ l όοΫϑΝΠΞޮՌΛࣔ͢Ϣʔβ͸ɺෆ ฏෆຬ΍εϥϯάతͳදݱΛ༻͍Δ͜ͱ

    ͕ଟ͍ Nyhan, Brendan, and Jason Reifler. "When corrections fail: The persistence of political misperceptions." Political Behavior 32.2 (2010): 303-330. Jiang, Shan, and Christo Wilson. "Linguistic signals under misinformation and fact-checking: Evidence from user comments on social media." Proceedings of the ACM on Human-Computer Interaction 2.CSCW (2018): 1-23.
  9. 31 ΫΠζΛ׆༻ͨ͠ϑΣΠΫχϡʔε΁ͷରࡦ ͳͥਓʑ͸ϑΣΠΫχϡʔεΛ৴ͯ͡͠·͏ͷ͔ʁ l ϑΣΠΫχϡʔεΛݟ͔ͯΒగਖ਼͢ΔͷͰ ͸ͳ͘ɺʮڭҭʯͱͯ͠ϑΣΠΫχϡʔε ʹର͢ΔϫΫνϯΛ઀छ l ΫΠζܗࣜͰֶͿ͜ͱͰɺϑΣΠΫχϡʔ εʹରͯ͠ὃ͞Εʹ͘͘ͳΔޮՌΛൃش

    Roozenbeek, Jon, and Sander van der Linden. "Breaking Harmony Square: A game that “inoculates” against political misinformation." The Harvard Kennedy School Misinformation Review (2020).
  10. 32 ಈըΛ׆༻ͨ͠ϑΣΠΫχϡʔε΁ͷରࡦ ͳͥਓʑ͸ϑΣΠΫχϡʔεΛ৴ͯ͡͠·͏ͷ͔ʁ l ಈըʹΑΔϑΣΠΫχϡʔεରࡦ l ϑΣΠΫχϡʔεʹରͯ͠ڧ͘ͳΔʮ৺ ཧత༧๷઀छʯͷޮՌ͸ݟΒΕ͕ͨɺΫ Πζ΄Ͳͷେ͖͞Ͱ͸ͳ͍ l

    ҰํͰɺίετ͕҆͘ɺଟ͘ͷਓʑʹ ʮडಈతʯʹ઀छ͕Մೳ Roozenbeek, Jon, et al. "Psychological inoculation improves resilience against misinformation on social media." Science advances 8.34 (2022): eabo6254.
  11. 33 φοδΛ׆༻ͨ͠ϑΣΠΫχϡʔε΁ͷରࡦ ͳͥਓʑ͸ϑΣΠΫχϡʔεΛ৴ͯ͡͠·͏ͷ͔ʁ l χϡʔεΛݟΔલʹ5SVF'BLFϥϕϧΛఏ ࣔ͢Δ΂͖͔ʁݟͨޙʹఏࣔ͢Δ΂͖͔ɺ ʹ͍ͭͯͲͷλΠϛϯάͰఏࣔ͢Δ͔Ͱ ਓʑͷϑΣΠΫχϡʔεʹର͢Δೝ஌͕ม Խ͢Δ͔Λݕূ l

    ݟग़͠ΛಡΜͩޙʹగਖ਼͢Δ͜ͱ͕Ұ൪ޮ Ռ͕ߴ͍͜ͱΛࣔ͢ Brashier, Nadia M., et al. "Timing matters when correcting fake news." Proceedings of the National Academy of Sciences 118.5 (2021): e2020043118.
  12. 37 'BLF/FXT(FOFSBUJPO ੜ੒"*ͱϑΣΠΫχϡʔε Brown, Tom, et al. "Language models are

    few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901. (15ʹΑΔχϡʔεੜ੒
  13. 39 ੜ੒"*ͷ੓࣏৘ใ΁ͷ׆༻ l ੓࣏ɾࣾձ໰୊ʹؔ͢Δ৘ใ Λ࡞੒͢ΔͨΊʹɺը૾ɾς Ωετͷੜ੒ϞσϧΛͷࠃ Ͱར༻͞Ε͍ͯΔ͜ͱΛใࠂ House, Freedom. The

    repressive power of artificial intelligence. Technical Report.{Freedom House}. https://freedomhouse. org/report/freedom-net/2023/repressive-power-artificial-intelligence, 2023. ੜ੒"*ͱϑΣΠΫχϡʔε
  14. 40 ੜ੒"*ʹΑΔ࡞੒͞Εͨχϡʔεͷઆಘྗ l (15͸ਓؒΑΓ΋આಘྗͷ͋Δِ৘ใΛ࡞Γग़͢ l ਓؒʹ͸χϡʔε͕ੜ੒"*ʹΑΔ΋ͷ͔Ͳ͏͔൑அ Ͱ͖ͳ͍ Spitale, Giovanni, Nikola

    Biller-Andorno, and Federico Germani. "AI model GPT-3 (dis) informs us better than humans." Science Advances 9.26 (2023): eadh1850. ੜ੒"*ͱϑΣΠΫχϡʔε
  15. 41 ϑΣΠΫχϡʔεݕग़ʹ--.͕࢖͑Δ͔ʁ Li, Guanghua, et al. "Re-Search for The Truth:

    Multi-round Retrieval-augmented Large Language Models are Strong Fake News Detectors." arXiv preprint arXiv:2403.09747 (2024). ੜ੒"*ͱϑΣΠΫχϡʔε l --.ͱݕࡧΛ૊Έ߹ΘͤΔ͜ͱͰχϡʔε͕'BLF͔Ͳ͏͔Λ൑ఆ
  16. 42 %FFQGBLFݕग़ٕज़ͷൃల Reiss, Tal, Bar Cavia, and Yedid Hoshen. "Detecting

    deepfakes without seeing any." arXiv preprint arXiv:2311.01458 (2023). ੜ੒"*ͱϑΣΠΫχϡʔε https://www.i.u-tokyo.ac.jp/news/press/2022/202204262039.shtml
  17. 46 ೥݄ͷΞϝϦΧͷ4/4ۭؒ 4/4ΛऔΓר͘؀ڥ Nikolov, Dimitar, Alessandro Flammini, and Filippo Menczer.

    "Right and left, partisanship predicts (asymmetric) vulnerability to misinformation." arXiv preprint arXiv:2010.01462 (2020).
  18. 48 ΞςϯγϣϯɾΤίϊϛʔ l ϓϥοτϑΥʔϜͷ୆಄ʹΑ ΓΞςϯγϣϯࢢ৔ͷ୆಄ l ਓʑͷ࣌ؒΛୣ͍औΔڝ૪ۭ ؒͷܗ੒ l “Most

    people are unaware of how they spend their time and attention, their most crucial resources.” 4/4ΛऔΓר͘؀ڥ https://www.marketingmag.com.au/tech-data/why-attention-is-the-worlds-most-valuable- resource/
  19. 49 ΞςϯγϣϯɾΤίϊϛʔ l Ξςϯγϣϯࢢ৔Ͱ͸ʮࢥ૝ͷڝ૪ʯ͔Βʮܹࢗͷڝ૪ʯ΁ l ϑΣΠΫχϡʔε͕૿͑Δཧ༝ͷͭ l 5SPMMͷ૿ՃͷཁҼʹ΋ l "*ͷ੒௕͸ਓʑͷ࠷దͳ"UUFOUJPO֫ಘํ๏Λ༧ଌ͢Δ

    l 5JL5PLͷॎεΫϩʔϧʹΑΔਪન l γεςϜʹΑͬͯਓʑͷڧ੍తͳʮ൓ࣹʯΛҾ͖ى͜͢͜ͱ͔Βɺ ʮनΘΕͷ௃ऩʢDBQUJWFBVEJFODFʣʯͱදݱ l ೔ຊͰ͸ిं಺ͷԻ੠޿ࠂ͕ਓ֨ݖ֐ʹ͋ͨΔ͔Ͱٞ࿦͕Ճ೤ͨ͜͠ͱ΋ 4/4ΛऔΓר͘؀ڥ
  20. 52 ࠓޙͷσδλϧ؀ڥ l ϑΝΫτνΣοΫ΍ίϛϡχςΟϊʔτͳͲͷऔΓ૊Έͷ֦ॆͷ ඞཁੑ l ೔ຊͰ͸ϑΝΫτνΣοΫػ͕ؔগͳ͍ʢϑΝΫτνΣοΫͷଟ༷ੑ͕อ ͨΕͳ͍ʣ l ϚεϝσΟΞ͕ͦͷ໾ׂΛ

    ୲͏͜ͱ͕ظ଴͞Ε͍ͯΔ σδλϧ؀ڥͷະདྷ ⼭⼝ほか(2022)「Innovation Nippon 2021 わが国における偽・誤情報の実 態の把握と 社会的対処の検討」 https://www.glocom.ac.jp/activities/project/7759
  21. 57 ಡॻཤྺσʔλͷ෼ੳ ࠷ۙͷऔΓ૊Έ l ܭࢉػՊֶతΞϓϩʔνΛద༻Մೳͳܗʹม׵ 埋め込み表現技術 ベクトル表現 0.1, 0.3, 0.4,

    …, 0.9, 0.2, 0.4 0.2, 0.1, 0.3, …, 0.1, 0.0, 0.2 0.3, 0.5, 0.1, …, 0.0, 0.3, 0.5 Book1 Book2 Book3 Book4 Book1 Book2 Book3