Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Watsonによる物流課題の解決
Search
ishiitetsuji
May 26, 2019
Technology
0
1.1k
Watsonによる物流課題の解決
Call for Code 2019 説明会@名古屋のセッション資料です。Watson Buildへの取り組みとWatsonを使うコツを伝授します。
ishiitetsuji
May 26, 2019
Tweet
Share
More Decks by ishiitetsuji
See All by ishiitetsuji
UDC2024岐阜ブロック
ishiitetsuji
0
51
アーバンデータチャレンジ2024 長崎ブロック
ishiitetsuji
0
68
kintoneとすすめてみたいリビングラボ
ishiitetsuji
1
170
オープンデータは共有財産 ワーケーション編
ishiitetsuji
0
150
CIVIC TECH FORUM 2022 岐阜LT
ishiitetsuji
0
170
伝統産業 × IT 岐阜での取り組み事例
ishiitetsuji
0
360
岐阜ブロックの活動紹介
ishiitetsuji
0
97
いまむらさんのCat-Being
ishiitetsuji
0
240
シビックテック井戸端キャスト
ishiitetsuji
0
180
Other Decks in Technology
See All in Technology
Kill the Vibe?Architecture in the age of AI
stoth
1
140
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
970
Flutter Thread Merge - Flutter Tokyo #11
itsmedreamwalker
1
120
Eight Engineering Unit 紹介資料
sansan33
PRO
0
5.6k
IaC を使いたくないけどポリシー管理をどうにかしたい
kazzpapa3
1
200
オープンデータの内製化から分かったGISデータを巡る行政の課題
naokim84
2
1.1k
AI エージェント活用のベストプラクティスと今後の課題
asei
2
420
ローカルVLM OCRモデル + Gemini 3.0 Proで日本語性能を試す
gotalab555
1
240
SRE視点で振り返るメルカリのアーキテクチャ変遷と普遍的な考え
foostan
2
3.5k
『星の世界の地図の話: Google Sky MapをAI Agentでよみがえらせる』 - Google Developers DevFest Tokyo 2025
taniiicom
0
450
AI/MLのマルチテナント基盤を支えるコンテナ技術
pfn
PRO
3
270
なぜフロントエンド技術を追うのか?なぜカンファレンスに参加するのか?
sakito
6
1.6k
Featured
See All Featured
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
64
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
A designer walks into a library…
pauljervisheath
210
24k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
GitHub's CSS Performance
jonrohan
1032
470k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
690
Transcript
Watson Build 事例 Watsonを利用した物流課題の解決 2019.5.27 Call for Code 説明会@名古屋 (株)セイノー情報サービス
石井哲治
石井哲治 愛知出身 名古屋工業大学 1998年卒 株式会社セイノー情報サービスに勤務 知識ベース・ロボット推進室で人工知能 や最新技術を使って物流を効率化するこ とを考えなきゃいけないIT技術者 IBM CHAMPION
2019
None
Watson Build とは? Watson による物流課題の解決 Watson を活かすコツ
Watson Build とは?
IBMビジネス・パートナーを対象とした、新たなサービス やアプリケーションの創造にチャレンジするコンテスト 2018年は世界で約400チーム、日本から71チームが参加 https://www.ibm.com/jp-ja/partnerworld/resources/watsonbuild 約半年間かけて企画、プロトタイプ開発を行い審査
ご清聴ありがとうございました Watson Build 2018 日本チャンピオンとしてThink 2019に参加
Watson による物流課題の解決
と、いう言葉を聞いた事がありますか?
国土交通省「自動車輸送統計年報」より 小ロット、時間指定による積載率の低下 トラック積載効率の推移(営業用) トラックは空気を運んでいる
None
None
None
None
15
None
精度向上のための画像加工
精度向上のための画像加工 トリミングで荷台外部の背景を除去
精度向上のための画像加工 グレースケール化で色によるノイズを除去
25%以下 50%以下 75%以下 100%以下 積載率を25%刻みで4種類の分類器を作成
1日の積載量を増やすことは成功 だが、それを超える物量のムラに対応できない
直前に頼んでも運賃は変わらない ムラができる 物 量 時間 物流 リソース 早く計画するメリットが全くない
運賃の変動で物量を平準化する ダイナミックプライシング
運賃の変動で物量を平準化する ダイナミックプライシング 物 量 時間 物流 リソース
運賃の変動で物量を平準化する ダイナミックプライシング 物流 リソース 物 量 時間
Win - Win 物流プラットフォーム 荷主 ムリ・ムダ・ムラ を無くす 物流コストの 削減 輸送事業者
None
大手運送会社の輸送実績データを使用して物量予測モデルを作成 過去3年間の物量と直近の物量の伸び率から未来の物量を予測 伸び率 1.225 月 日 曜日 過去3年間実績物量(トン) 予約物量 2015年度
2016年度 2017年度 11月 1日 木曜日 3.1 3.1 3.2 2トン 11月 2日 金曜日 2.4 2.7 3.6 2.5トン 11月 3日 土曜日 1.5 0.35 0.90 0.5トン 11月 4日 日曜日 0.01 0.01 0.015 0.01トン 11月 5日 月曜日 2.6 3.6 1.4 2トン 11月 6日 火曜日 2.6 1.8 3.8 1トン 11月 7日 水曜日 2.5 3.8 1.6 3トン 130万件 過去10年分の輸送実績 物量予測モデルの構築
運賃 原価 販売開始金額 直前 一ヶ月前 東京大学 田中謙司准教授からアイデアをいただき実装 運賃の決定ロジック 輸送条件の組み合わせからリソース の利益を最大化できる運賃を判断
フィードバックによる学習を行い 精度を向上
17 兆円 × 33 % = 5.6 兆円 物流コスト 経済効果
33 % 削減 日本における経済効果 削減率
Watson を活かすコツ
Watsonはツールである 何かを「勝手にやってくれる」訳ではない ツールは正しく使ってはじめて役に立つ
役立つWatson API ランキング 第1位 Discovery 第2位 Visual Recognition 第3位 Watson
Assistant
文書データを自然言語解析で取得できるのはWatsonだけ ただ、基本的には検索機能なので使いどころに注意が必要 おすすめポイント ざんねんポイント FAQ、提案書、議事録、論文等をとりあえず突っ込める
少ない画像データで、そこそこの分類器がつくれる クラス分類までしかできない。そこを頑張る おすすめポイント ざんねんポイント ハッカソン的な使い方として一番使える
会話の復帰機能が実装された スロットがまだ弱い。チャットボットだけだと厳しい おすすめポイント ざんねんポイント セッション管理やメッセージサービスの連携も充実
IBM Cloud / Watsonを役に立てるには ツールの使い方を正しく知ろう 機能ドリブンより課題ドリブン シンプルなコンセプトを貫こう
Codeの力で世界の未来を変えよう