Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ディープラーニングで音楽生成
Search
masa-ita
October 13, 2018
Technology
0
1.3k
ディープラーニングで音楽生成
DL4USの最終課題として、ディープラーニングでの音楽生成を試みた。
LSTMによる予測モデル、VAE、GANを試した。
Python機械学習勉強会in新潟 2018-10-13での発表スライド。
masa-ita
October 13, 2018
Tweet
Share
More Decks by masa-ita
See All by masa-ita
Ollamaを使ったLocal Language Model活用法
itagakim
1
160
Run Instant NeRF on Docker
itagakim
1
2.3k
3D Clustering and Metric Learning
itagakim
0
350
Cloud TPUの使い方〜BigBirdの日本語学習済みモデルを作る〜
itagakim
0
680
多言語学習済みモデルmT5とは?
itagakim
1
700
AWSのGPUを安く使ってTensorFlowモデルを訓練する方法
itagakim
0
370
最近の自然言語処理モデルの動向
itagakim
1
570
ディープラーニングで芸術はできるか?〜生成系ネットワークの進展〜
itagakim
0
340
AWSとTerraform初心者がやってみたこと
itagakim
1
480
Other Decks in Technology
See All in Technology
現場データから見える、開発生産性の変化コード生成AI導入・運用のリアル〜 / Changes in Development Productivity and Operational Challenges Following the Introduction of Code Generation AI
nttcom
1
430
「魔法少女まどか☆マギカ Magia Exedra」におけるバックエンドの技術選定
gree_tech
PRO
0
100
Zephyr(RTOS)にEdge AIを組み込んでみた話
iotengineer22
1
250
AI時代におけるデータの重要性 ~データマネジメントの第一歩~
ryoichi_ota
0
710
[VPoE Global Summit] サービスレベル目標による信頼性への投資最適化
satos
0
210
Claude Codeを駆使した初めてのiOSアプリ開発 ~ゼロから3週間でグローバルハッカソンで入賞するまで~
oikon48
10
5.3k
ハノーファーメッセ2025で見た生成AI活用ユースケース.pdf
hamadakoji
0
370
MCP ✖️ Apps SDKを触ってみた
hisuzuya
0
290
ヘンリー会社紹介資料(エンジニア向け) / company deck for engineer
henryofficial
0
300
ソースを読むプロセスの例
sat
PRO
15
9.7k
OSSで50の競合と戦うためにやったこと
yamadashy
3
930
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Why Our Code Smells
bkeepers
PRO
340
57k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Optimizing for Happiness
mojombo
379
70k
Statistics for Hackers
jakevdp
799
220k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Balancing Empowerment & Direction
lara
5
700
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
Pythonػցֶशษڧձ in ৽ׁ Restart #2 Kerasで ⾳楽を作る 2018/10/13 ൘֞ ਖ਼හ
DL4USに参加し た DL4US౦ژେֶদඌ๛ݚڀ ࣨʹΑΔɺҰൠʹެ։͞Εͨɺ σΟʔϓϥʔχϯάͷΦϯϥ Πϯߨ࠲
7週にわたるカリキュラム ❖ Lesson1: खॻ͖จࣈೝࣝ —- χϡʔϥϧωοτϫʔΫ, Keras, ࠷దԽख๏, աֶशରࡦ ❖
Lesson2: ΈࠐΈχϡʔϥϧωοτϫʔΫͰը૾ೝࣝ —- CNN, σʔλ֦ு, Batch Normalization, Skip Connection ❖ Lesson3: ܥྻσʔλͰ༧ଌ —- RNNجૅ, LSTM, BPTT, Clipping, γϣʔτΧοτ, ήʔτ ❖ Lesson4: χϡʔϥϧ༁Ϟσϧ —- ݴޠϞσϧ, Seq2Seq, Attentionػߏ ❖ Lesson5: ը૾͔ΒΩϟϓγϣϯੜ —- Ωϟϓγϣϯੜ, సҠֶश, ϏʔϜαʔν ❖ Lesson6: χϡʔϥϧωοτͰը૾ੜ —- ਂੜϞσϧ, VAE, GAN ❖ Lesson7: χϡʔϥϧωοτͰήʔϜΛ߈ུ͢ΔAI —- DQN, OpenAI Gym, Double DQN, Dueling Network
iLect ΦϯϥΠϯߨ࠲Ͱఏڙ͞Εͨ GPU͕͑ΔԾڥ JupterLabͰڭࡐఏڙ ՝ίϯςετܗࣜ
最終課題[レポート] ❖ ʮσΟʔϓϥʔχϯάʹؔ͢Δ͜ͱͳΒ ԿΛ͍͍ͬͯΑʯ
⾳楽⽣成をやってみよう!
作戦 ❖ ࣮Ͱ͋·ΓΘͳ͍ੜϞσϧΛ͍Ζ͍Ζͱࢼͯ͠ ΈΔ ❖ RNNʢLSTMʣʹΑΔ༧ଌϞσϧ ❖ VAEʢVariational Auto EncoderʣʹΑΔੜ
❖ GANʢGenerative Adversarial NetworkʣʹΑΔੜ
LSTM ❖ Long Short Term Memory ❖ γʔέϯγϟϧσʔλΛѻ͏ߏͷද֨ http://colah.github.io/posts/2015-08-Understanding-LSTMs/
LSTMによる予測モデル ❖ աڈͷγʔέϯε͔Βɺ࣍ʹԿ͕དྷΔ͔ͷ֬Λग़͢ɻ https://towardsdatascience.com/lstm-by-example-using-tensorflow-feb0c1968537
VAE ❖ Auto Encoderʢࣗݾූ߸Խثʣೖྗͷ࣍ݩΛݮͨ͠જࡏۭؒΛɺೖྗͱग़ྗ͕ಉ͡Α͏ʹͳ ΔΑ͏ʹֶश͢Δɻ ❖ Variational Auto EncoderʢมΦʔτΤϯίʔμʣɺજࡏۭؒΛଟมྔਖ਼نۭؒͱఆ͠ɺ ͦͷฏۉͱΛֶशʹΑͬͯٻΊΔɻ
http://mlexplained.com/2017/12/28/an-intuitive-explanation-of-variational-autoencoders-vaes-part-1/
VAE で⽣成される潜在空間 ❖ VAEʹΑͬͯੜ͞ΕΔજࡏۭؒʹʮҙຯͷ͋Δ࠲ඪ࣠ʯ͕ظ͞ΕΔɻ ❖ ্هMNISTͷखॻ͖ࣈͷྫ͕ͩɺإࣸਅͰʮײʯʮϝΨωʯʮͻ͛ʯʮஉ ঁʯͳͲͷ࠲ඪ͕࣠ݟग़͞Ε͍ͯΔɻ https://tiao.io/post/tutorial-on-variational-autoencoders-with-a-concise-keras-implementation/
GAN ❖ GANʢఢରతੜωοτϫʔΫʣͰɺʮآ࡞ऀʢGeneratorʣʯͱʮؑఆՈ ʢDiscriminatorʣʯ͕᛭ୖຏ͠ͳ͕ΒֶशΛߦ͏ɻ ❖ ݁Ռͱͯ͠ʮآ࡞ऀʯ͕ϥϯμϜͳϊΠζΛͱʹɺʮؑఆՈʯʹݟഁΒΕͳ͍Α͏ ͳʮຊΒ͍͠࡞ʯΛੜ͢Δ͜ͱ͕ظ͞ΕΔɻ https://skymind.ai/wiki/generative-adversarial-network-gan
LSTMのモデル ❖ LSTMΛ3ॏͶͨϞσϧ ❖ աֶशͷ੍ʹDropoutΛೖΕ͍ͯΔ͕ɾɾɾ model = Sequential() model.add(LSTM(512, input_shape=(sequence_length,
n_vocab), return_sequences=True)) model.add(Dropout(0.3)) model.add(LSTM(512, return_sequences=True)) model.add(Dropout(0.3)) model.add(LSTM(512)) model.add(Dense(256)) model.add(Dropout(0.3)) model.add(Dense(n_vocab, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc'])
VAEのモデル # Encoder x = Input(shape=(max_length, n_vocab)) h = LSTM(lstm_dim,
return_sequences=False, name='lstm_1')(x) z_mean = Dense(latent_dim)(h) # જࡏมͷฏۉ μ z_log_var = Dense(latent_dim)(h) #જࡏมͷࢄ σͷlog encoder = Model(inputs=x, outputs=[z_mean, z_log_var]) def sampling(args): z_mean, z_log_var = args epsilon = K.random_normal(shape=(batch_size, latent_dim), mean=0., stddev=1.0) return z_mean + K.exp(z_log_var) * epsilon z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var]) # Decoder decoder_input = Input(shape=(latent_dim,)) repeated_context = RepeatVector(max_length)(decoder_input) h_decoded = LSTM(lstm_dim, return_sequences=True)(repeated_context) decoder_output = TimeDistributed(Dense(n_vocab, activation='softmax'))(h_decoded) decoder = Model(inputs=decoder_input, outputs=decoder_output) x_decoded = decoder(z)
VAEの損失関数 ❖ VAEͷଛࣦؔɺೖྗͱग़ྗͷؒͷࠩҟΛද͢ʮ෮ݩޡࠩʯʹՃ͑ ͯɺજࡏۭؒͷύϥϝʔλΛنఆ͢Δʮਖ਼ଇԽ߲ʯΛ༻͍Δɻ class CustomVariationalLayer(Layer): # Layer classͷܧঝ def
__init__(self, **kwargs): self.is_placeholder = True super(CustomVariationalLayer, self).__init__(**kwargs) def vae_loss(self, x, x_decoded): x = K.flatten(x) x_decoded = K.flatten(x_decoded) xent_loss = max_length * metrics.binary_crossentropy(x, x_decoded) # ෮ݩޡࠩ kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) # ਖ਼ଇԽ߲ return K.mean(xent_loss + kl_loss) def call(self, inputs): x = inputs[0] x_decoded = inputs[1] loss = self.vae_loss(x, x_decoded) self.add_loss(loss, inputs=inputs) # Layer class ͷadd_lossΛར༻ return x # ࣮࣭తʹग़ྗར༻͠ͳ͍ y = CustomVariationalLayer()([x, x_decoded]) vae = Model(x, y) # xΛinputʹyΛग़ྗ, ग़ྗ࣮࣭ؔͳ͍ vae.compile(optimizer='rmsprop', loss=None) # CustomVariationalLayerͰՃͨ͠LossΛར༻͢ΔͷͰ͜͜ͰͷlossNoneͱ͢Δ
GANのモデル ❖ GANͷ܇࿅GͱDΛަޓʹֶशͤ͞Δϓϩηε # Generator generator_input = Input(shape=(max_length, latent_dim,)) x
= LSTM(lstm_dim, return_sequences=True)(generator_input) generator_output = TimeDistributed(Dense(n_vocab, activation='softmax'))(x) generator = Model(generator_input, generator_output) # Discriminator discriminator_input = Input(shape=(max_length, n_vocab)) x = LSTM(lstm_dim)(discriminator_input) dense_output = Dense(256, activation='relu')(x) discriminator_output = Dense(2, activation='softmax')(dense_output) discriminator = Model(discriminator_input, discriminator_output) discriminator.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.1)) # GAN gan_input = Input(shape=(max_length, latent_dim)) x = generator(gan_input) gan_output = discriminator(x) model = Model(gan_input, gan_output) model.compile(loss='binary_crossentropy', optimizer=opt)
実験 ❖ σʔλmidiworld.comͷόοϋͷ2ΠϯϕϯγϣϯͷMIDIϑΝΠϧΛ༻ ❖ LSTMͱGANͰɺ܇࿅༻ָۂ͔ΒΓग़ͨ͠அยΛɺVAEͰ܇࿅༻ָۂͦͷ ͷΛ༻ͨ͠ ❖ LSTMͰ܇࿅༻ָۂͷχϡΞϯεʹ͍ۙϝϩσΟ͕ੜ͞Εͨ ❖ VAEͰ܇࿅༻ָۂΛೖྗʹͨ͠߹ɺݪۂͷχϡΞϯεʹ͍ۙϝϩσΟ͕ੜ
͞ΕΔ͕ɺͦΕҎ֎ͷજࡏۭؒͷΛࢦఆͨ͠߹ʹϥϯμϜੑͷڧ͍ϝ ϩσΟ͕ੜ͞Εͨ ❖ GANͰֶश͕͏·͘Ώ͔ͣɺ࣌ંύλʔϯੑͷڧ͍ϝϩσΟ͕ੜ͞Εͨ ͕ɺ΄ͱΜͲಉ͡Իූͷ܁Γฦ͠ʹͳͬͯ͠·ͬͨ
https://github.com/masa-ita/keras-music-generators https://soundcloud.com/itagakim
宣伝 ❖ python/django meetup in ৽ׁ ❖ 10݄24ʢਫʣ19:00-21:00 @ Prototype
Cafe ❖ https://pyml-niigata.connpass.com/event/104872/ ❖ ΦʔϓϯιʔεΧϯϑΝϨϯε 2018 Niigata ❖ 11݄10ʢʣ11:00-17:30 @ ΄ΜΆʔͱ ❖ https://www.ospn.jp/osc2018-niigata/
Python機械学習勉強会in新潟では、 Slackを使った情報交換を⾏っています。 後ほどconnpassのグループで招待リンクをお送りします。