Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Google ColabでDL入門#2
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
masa-ita
October 13, 2018
Technology
2
290
Google ColabでDL入門#2
Google Colab上でKeras Tutorialsの日本語版を試すハンズオンの2回め。
Python機械学習勉強会in新潟 2018-10-13での発表スライド。
masa-ita
October 13, 2018
Tweet
Share
More Decks by masa-ita
See All by masa-ita
Ollamaを使ったLocal Language Model活用法
itagakim
1
180
Run Instant NeRF on Docker
itagakim
1
2.3k
3D Clustering and Metric Learning
itagakim
0
380
Cloud TPUの使い方〜BigBirdの日本語学習済みモデルを作る〜
itagakim
0
710
多言語学習済みモデルmT5とは?
itagakim
1
750
AWSのGPUを安く使ってTensorFlowモデルを訓練する方法
itagakim
0
390
最近の自然言語処理モデルの動向
itagakim
1
580
ディープラーニングで芸術はできるか?〜生成系ネットワークの進展〜
itagakim
0
360
AWSとTerraform初心者がやってみたこと
itagakim
1
490
Other Decks in Technology
See All in Technology
Red Hat OpenStack Services on OpenShift
tamemiya
0
120
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
1
2.7k
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
200
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
260
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
310
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
600
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.5k
配列に見る bash と zsh の違い
kazzpapa3
3
160
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
620
Why Organizations Fail: ノーベル経済学賞「国家はなぜ衰退するのか」から考えるアジャイル組織論
kawaguti
PRO
1
100
Featured
See All Featured
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Ethics towards AI in product and experience design
skipperchong
2
200
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Abbi's Birthday
coloredviolet
1
4.8k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
86
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
Making Projects Easy
brettharned
120
6.6k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
10
1.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Transcript
Pythonػցֶशษڧձ in ৽ׁ ͰDLೖ#2 Google Colab 1 ൘֞ ਖ਼හ 2018-10-13
PyML in Niigata • ൘֞ ਖ਼හ • גࣜձࣾBSNΞΠωοτ ٕज़ސ •
தখاۀஅ࢜ • ຊRubyͷձ • ৽ׁΦʔϓϯιʔεڠձ • Pythonॳ৺ऀ WHO AM I ? 2
PyML in Niigata • ʮColaboratory ɺػց ֶशͷڭҭݚڀͷଅਐ Λతͱͨ͠ Google ݚ
ڀϓϩδΣΫτͰ͢ʯby Google • Google Driveͱ࿈ಈ • ίϯςφٕज़Λ׆༻ͨ͠ JupyterͷΧελϜڥ • νʔϜϝϯόʔͰͷڞಉ ฤू͕Մೳ • GPU/TPUແྉͰ͑ Δʂ • ੍ݶ࣌ؒ12࣌ؒʁ WHAT IS GOOGLE COLABORATORY? 3
ʮDriveʹίϐʔʯΛΫϦοΫ ͯ͠Driveͱͷ࿈ܞΛ։࢝ PyML in Niigata HOW TO BEGIN https://colab.research.google.com/ 4
PyML in Niigata • TensorFlowGoogleͷ OSSʢOpen Source Softwareʣ • Deep
LearningͷCoreͰ͋ ΔTensorԋࢉΛCPU/GPU Ͱߴ࣮ߦ͢ΔͨΊͷϥΠ ϒϥϦ • cf Caffe, MXNet, CNTK etc. • KerasFrançois Chollé @Google͕։ൃͨ͠OSS • TensorFlowɺ Theanoɺ CNTKͳͲͷόοΫΤϯυ Λ͍ɺModelΛॻ͖͢ ͘͢ΔϥΠϒϥϦ • TensorFlowʹࠐࡁ • cf Chainer, PyTorch etc. WHAT IS TENSORFLOW/KERAS? 5
ΦϦδφϧͷTutorials ɺࠨهͷURLͰެ։ ͞Ε͍ͯ·͢ɻ ͜ͷTutorials TensorFlowͷυΩϡϝ ϯτதͷhttps:// github.com/tensorflow/ docs/tree/master/site/ en/tutorials/keras ʹؚ
·Ε͍ͯ·͢ɻ PyML in Niigata LET’S START KERAS TUTORIALS https://www.tensorflow.org/tutorials/ 6
github.comͰ্هͷ ιʔείʔυʢJupyter NotebookʣΛදࣔ͠· ͢ɻ ࠨਤͷͱ͓Γɺ”Run in Google Colab (Japanese translation)”
ͷϦϯΫΛΫϦοΫ͢ ΔͱɺGoogle ColabͰ ։͘͜ͱ͕ग़དྷ·͢ɻ PyML in Niigata LET’S START KERAS WITH JAPANESE https://github.com/masa-ita/keras-tutorials/ 7
GITHUBλϒΛબ ͠ɺϢʔβʔ໊”masa- ita”Λೖྗͯ͠ݕࡧϘλ ϯΛΫϦοΫ͠·͢ɻ ϦϙδτϦ͔Β”masa- ita/keras-tutorials”ɺϒ ϥϯν”master”Λબ ͠·͢ɻ දࣔ͞Εͨύεͷத͔ Β”basic_text_classific
ation.ipynb”ͷӈͷϘ λϯΛΫϦοΫ͠·͢ɻ PyML in Niigata LET’S START KERAS WITH JAPANESE https://colab.research.google.com/ Λ։͖·͢ɻ 8
͜ͷঢ়ଶͰɺ Notebookͷ࣮ߦग़དྷ ·͕͢ɺग़ྗΛอଘ͢ Δ͜ͱ͕ग़དྷ·ͤΜɻ ग़ྗΛอଘ͢Δʹ ʮϑΝΠϧʯϝχϡʔ ͔ΒʮυϥΠϒʹίϐʔ ΛอଘʯΛબͯ͠ɺ Google Driveʹίϐʔ
Λอଘ͠·͢ɻ PyML in Niigata SAVE THE NOTEBOOK ON GOOGLE DRIVE 9
GPUΛ༻͢ΔʹɺʮϥϯλΠ Ϝʯϝχϡʔ͔ΒʮϥϯλΠϜͷλ ΠϓΛมߋʯΛબ͠ɺʮϋʔυΣ ΞΞΫηϥϨʔλʯΛʮNoneʯ͔ ΒʮGPUʯʹมߋ͠·͢ɻ PyML in Niigata HOW TO
USE GPU 10
Google͕࡞ͨ͠ϊʔτ ϒοΫҎ֎Λ࣮ߦ͢Δࡍ ʹɺࠨਤͷΑ͏ͳηΩϡ ϦςΟܯࠂ͕දࣔ͞ΕΔ ͜ͱ͕͋Γ·͢ɻ ϦηοτΛ࣮ߦ͢Δࡍʹ Լਤͷ֬ೝ͕ඞཁͰ͢ ɻ PyML in
Niigata SECURITY WARNING 11
PyML in Niigata TEXT CLASSIFICATION 12
PyML in Niigata WORD EMBEDDING 13 <START> this film was
just brilliant casting … with us all [1, 14, 22, 16, 43, 530, 973, …, 19, 178, 32] a1 b1 ⋮ p1 a2 b2 ⋮ p2 a3 b3 ⋮ p3 am bm ⋮ pm am bm ⋮ cm Embedding GlobalAveragePooling1D
PyML in Niigata TIPS HOW TO BRING YOUR OWN DATA
https://colab.research.google.com/notebooks/io.ipynb 14 ԼهͷίʔυΛ࣮ߦ͢ΔͱೝূϦϯΫͱೖྗϑΟʔϧυ͕දࣔ͞Ε·͢ɻ ೝূϦϯΫΛΫϦοΫͯ͠ɺGoogle Colab͔ΒͷGoogle DriveͷΞΫη εΛڐՄ͠ɺൃߦ͞ΕͨτʔΫϯΛೖྗϑΟʔϧυʹϖʔετ͠Enter ΩʔΛԡ͢ͱɺGoogle Drive ͕Ϛϯτ͞Ε·͢ɻ
PyML in Niigata NEXT STEP ଞͷϊʔτϒοΫͬͯΈΔ ϊʔτϒοΫΛίϐʔͯ͠ϞσϧΛ͍ͬͯ͡ΈΔ ॻ੶WEB্ͷίʔυΛ࣮ߦͯ͠ΈΔ 15