Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Google ColabでDL入門#2
Search
masa-ita
October 13, 2018
Technology
2
280
Google ColabでDL入門#2
Google Colab上でKeras Tutorialsの日本語版を試すハンズオンの2回め。
Python機械学習勉強会in新潟 2018-10-13での発表スライド。
masa-ita
October 13, 2018
Tweet
Share
More Decks by masa-ita
See All by masa-ita
Ollamaを使ったLocal Language Model活用法
itagakim
1
120
Run Instant NeRF on Docker
itagakim
1
2.2k
3D Clustering and Metric Learning
itagakim
0
320
Cloud TPUの使い方〜BigBirdの日本語学習済みモデルを作る〜
itagakim
0
660
多言語学習済みモデルmT5とは?
itagakim
1
660
AWSのGPUを安く使ってTensorFlowモデルを訓練する方法
itagakim
0
360
最近の自然言語処理モデルの動向
itagakim
1
560
ディープラーニングで芸術はできるか?〜生成系ネットワークの進展〜
itagakim
0
330
AWSとTerraform初心者がやってみたこと
itagakim
1
460
Other Decks in Technology
See All in Technology
Amazon Bedrockで実現する 新たな学習体験
kzkmaeda
2
540
Navigation3でViewModelにデータを渡す方法
mikanichinose
0
220
急成長を支える基盤作り〜地道な改善からコツコツと〜 #cre_meetup
stefafafan
0
120
“社内”だけで完結していた私が、AWS Community Builder になるまで
nagisa53
1
390
製造業からパッケージ製品まで、あらゆる領域をカバー!生成AIを利用したテストシナリオ生成 / 20250627 Suguru Ishii
shift_evolve
PRO
1
140
Yamla: Rustでつくるリアルタイム性を追求した機械学習基盤 / Yamla: A Rust-Based Machine Learning Platform Pursuing Real-Time Capabilities
lycorptech_jp
PRO
3
120
AWS アーキテクチャ作図入門/aws-architecture-diagram-101
ma2shita
29
11k
Understanding_Thread_Tuning_for_Inference_Servers_of_Deep_Models.pdf
lycorptech_jp
PRO
0
120
~宇宙最速~2025年AWS Summit レポート
satodesu
1
1.8k
VISITS_AIIoTビジネス共創ラボ登壇資料.pdf
iotcomjpadmin
0
160
GitHub Copilot の概要
tomokusaba
1
130
M3 Expressiveの思想に迫る
chnotchy
0
100
Featured
See All Featured
Code Review Best Practice
trishagee
68
18k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Building Adaptive Systems
keathley
43
2.6k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.3k
Typedesign – Prime Four
hannesfritz
42
2.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.8k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Faster Mobile Websites
deanohume
307
31k
Rails Girls Zürich Keynote
gr2m
94
14k
Transcript
Pythonػցֶशษڧձ in ৽ׁ ͰDLೖ#2 Google Colab 1 ൘֞ ਖ਼හ 2018-10-13
PyML in Niigata • ൘֞ ਖ਼හ • גࣜձࣾBSNΞΠωοτ ٕज़ސ •
தখاۀஅ࢜ • ຊRubyͷձ • ৽ׁΦʔϓϯιʔεڠձ • Pythonॳ৺ऀ WHO AM I ? 2
PyML in Niigata • ʮColaboratory ɺػց ֶशͷڭҭݚڀͷଅਐ Λతͱͨ͠ Google ݚ
ڀϓϩδΣΫτͰ͢ʯby Google • Google Driveͱ࿈ಈ • ίϯςφٕज़Λ׆༻ͨ͠ JupyterͷΧελϜڥ • νʔϜϝϯόʔͰͷڞಉ ฤू͕Մೳ • GPU/TPUແྉͰ͑ Δʂ • ੍ݶ࣌ؒ12࣌ؒʁ WHAT IS GOOGLE COLABORATORY? 3
ʮDriveʹίϐʔʯΛΫϦοΫ ͯ͠Driveͱͷ࿈ܞΛ։࢝ PyML in Niigata HOW TO BEGIN https://colab.research.google.com/ 4
PyML in Niigata • TensorFlowGoogleͷ OSSʢOpen Source Softwareʣ • Deep
LearningͷCoreͰ͋ ΔTensorԋࢉΛCPU/GPU Ͱߴ࣮ߦ͢ΔͨΊͷϥΠ ϒϥϦ • cf Caffe, MXNet, CNTK etc. • KerasFrançois Chollé @Google͕։ൃͨ͠OSS • TensorFlowɺ Theanoɺ CNTKͳͲͷόοΫΤϯυ Λ͍ɺModelΛॻ͖͢ ͘͢ΔϥΠϒϥϦ • TensorFlowʹࠐࡁ • cf Chainer, PyTorch etc. WHAT IS TENSORFLOW/KERAS? 5
ΦϦδφϧͷTutorials ɺࠨهͷURLͰެ։ ͞Ε͍ͯ·͢ɻ ͜ͷTutorials TensorFlowͷυΩϡϝ ϯτதͷhttps:// github.com/tensorflow/ docs/tree/master/site/ en/tutorials/keras ʹؚ
·Ε͍ͯ·͢ɻ PyML in Niigata LET’S START KERAS TUTORIALS https://www.tensorflow.org/tutorials/ 6
github.comͰ্هͷ ιʔείʔυʢJupyter NotebookʣΛදࣔ͠· ͢ɻ ࠨਤͷͱ͓Γɺ”Run in Google Colab (Japanese translation)”
ͷϦϯΫΛΫϦοΫ͢ ΔͱɺGoogle ColabͰ ։͘͜ͱ͕ग़དྷ·͢ɻ PyML in Niigata LET’S START KERAS WITH JAPANESE https://github.com/masa-ita/keras-tutorials/ 7
GITHUBλϒΛબ ͠ɺϢʔβʔ໊”masa- ita”Λೖྗͯ͠ݕࡧϘλ ϯΛΫϦοΫ͠·͢ɻ ϦϙδτϦ͔Β”masa- ita/keras-tutorials”ɺϒ ϥϯν”master”Λબ ͠·͢ɻ දࣔ͞Εͨύεͷத͔ Β”basic_text_classific
ation.ipynb”ͷӈͷϘ λϯΛΫϦοΫ͠·͢ɻ PyML in Niigata LET’S START KERAS WITH JAPANESE https://colab.research.google.com/ Λ։͖·͢ɻ 8
͜ͷঢ়ଶͰɺ Notebookͷ࣮ߦग़དྷ ·͕͢ɺग़ྗΛอଘ͢ Δ͜ͱ͕ग़དྷ·ͤΜɻ ग़ྗΛอଘ͢Δʹ ʮϑΝΠϧʯϝχϡʔ ͔ΒʮυϥΠϒʹίϐʔ ΛอଘʯΛબͯ͠ɺ Google Driveʹίϐʔ
Λอଘ͠·͢ɻ PyML in Niigata SAVE THE NOTEBOOK ON GOOGLE DRIVE 9
GPUΛ༻͢ΔʹɺʮϥϯλΠ Ϝʯϝχϡʔ͔ΒʮϥϯλΠϜͷλ ΠϓΛมߋʯΛબ͠ɺʮϋʔυΣ ΞΞΫηϥϨʔλʯΛʮNoneʯ͔ ΒʮGPUʯʹมߋ͠·͢ɻ PyML in Niigata HOW TO
USE GPU 10
Google͕࡞ͨ͠ϊʔτ ϒοΫҎ֎Λ࣮ߦ͢Δࡍ ʹɺࠨਤͷΑ͏ͳηΩϡ ϦςΟܯࠂ͕දࣔ͞ΕΔ ͜ͱ͕͋Γ·͢ɻ ϦηοτΛ࣮ߦ͢Δࡍʹ Լਤͷ֬ೝ͕ඞཁͰ͢ ɻ PyML in
Niigata SECURITY WARNING 11
PyML in Niigata TEXT CLASSIFICATION 12
PyML in Niigata WORD EMBEDDING 13 <START> this film was
just brilliant casting … with us all [1, 14, 22, 16, 43, 530, 973, …, 19, 178, 32] a1 b1 ⋮ p1 a2 b2 ⋮ p2 a3 b3 ⋮ p3 am bm ⋮ pm am bm ⋮ cm Embedding GlobalAveragePooling1D
PyML in Niigata TIPS HOW TO BRING YOUR OWN DATA
https://colab.research.google.com/notebooks/io.ipynb 14 ԼهͷίʔυΛ࣮ߦ͢ΔͱೝূϦϯΫͱೖྗϑΟʔϧυ͕දࣔ͞Ε·͢ɻ ೝূϦϯΫΛΫϦοΫͯ͠ɺGoogle Colab͔ΒͷGoogle DriveͷΞΫη εΛڐՄ͠ɺൃߦ͞ΕͨτʔΫϯΛೖྗϑΟʔϧυʹϖʔετ͠Enter ΩʔΛԡ͢ͱɺGoogle Drive ͕Ϛϯτ͞Ε·͢ɻ
PyML in Niigata NEXT STEP ଞͷϊʔτϒοΫͬͯΈΔ ϊʔτϒοΫΛίϐʔͯ͠ϞσϧΛ͍ͬͯ͡ΈΔ ॻ੶WEB্ͷίʔυΛ࣮ߦͯ͠ΈΔ 15