Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Bayesian methods for constraining initial conditions and viscosity

Bayesian methods for constraining initial conditions and viscosity

Presented at the 2015 RHIC & AGS Annual Users' Meeting https://www.bnl.gov/aum2015

Jonah Bernhard

June 09, 2015
Tweet

More Decks by Jonah Bernhard

Other Decks in Science

Transcript

  1. Bayesian methods for constraining initial conditions and viscosity Jonah Bernhard

    (Duke University) 2015 RHIC & AGS Annual Users’ Meeting Tuesday, June 9 J. E. Bernhard, P. W. Marcy, C. E. Coleman-Smith, S. Huzurbazar, R. L. Wolpert, and S. A. Bass, PRC 91, 054910 (2015), arXiv:1502.00339 [nucl-th].
  2. Model-to-data comparison | < 1) lab η (| ch N

    50 100 150 200 c < 3.0 GeV/ T p < | > 1.4} η ∆ {2, | 2 v {4} 2 v = 5.02 TeV NN s ICE p-Pb | < 1) lab η (| ch N 10 2 10 3 10 2 v 0 0.02 0.04 0.06 0.08 0.1 0.12 | > 1.4} η ∆ {2, | 2 v {4} 2 v {6} 2 v 82 65 52 43 31 17 7 Centrality (%) c < 3.0 GeV/ T p 0.2 < = 2.76 TeV NN s ALICE Pb-Pb Model Initial conditions, τ0, η/s, . . . 0 2000 4000 6000 Glauber ­ Nch ® 0.00 0.04 0.08 0.12 v2 {2} 0.00 0.02 0.04 v3 {2} 0 10 20 30 40 50 Centrality % 0 2000 4000 6000 KLN 0 10 20 30 40 50 Centrality % 0.00 0.04 0.08 0.12 0 10 20 30 40 50 Centrality % 0.00 0.02 0.04 Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 1 / 17
  3. Measuring QGP η/s 1. Observe experimental flow coefficients vn 2.

    Run model with variable η/s 3. Constrain η/s by matching vn 0 10 20 30 (1/S) dN ch /dy (fm-2 ) 0 0.05 0.1 0.15 0.2 0.25 v 2 /ε 0 10 20 30 40 (1/S) dN ch /dy (fm-2 ) hydro (η/s) + UrQMD hydro (η/s) + UrQMD MC-Glauber MC-KLN 0.0 0.08 0.16 0.24 0.0 0.08 0.16 0.24 η/s η/s v 2 {2} / 〈ε2 part 〉1/2 Gl (a) (b) 〈v 2 〉 / 〈ε part 〉 Gl v 2 {2} / 〈ε2 part 〉1/2 KLN 〈v 2 〉 / 〈ε part 〉 KLN H. Song, S. A. Bass, U. Heinz, T. Hirano, and C. Shen, PRL 106, 192301 (2011), arXiv:1011.2783 [nucl-th]. Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 2 / 17
  4. Extracting QGP properties Older work Average calculations Only η/s Several

    discrete values Qualitative constraints lacking uncertainty New projects Event-by-event model Many parameters Continuous parameter space Quantitative constraints including uncertainty See also, e.g.: J. Novak, K. Novak, S. Pratt, C. Coleman-Smith, and R. Wolpert, PRC 89, 034917 (2014), arXiv:1303.5769 [nucl-th]. R. A. Soltz, I. Garishvili, M. Cheng, B. Abelev, A. Glenn, J. Newby, L. A. Linden Levy, and S. Pratt, PRC 87, 044901 (2013), arXiv:1208.0897 [nucl-th]. S. Pratt, E. Sangaline, P. Sorensen, and H. Wang, arXiv:1501.04042 [nucl-th]. −→ Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 3 / 17
  5. Strategy 1. Choose set of salient model parameters physical properties

    model nuisance parameters 2. Run model at small O(101–102) set of parameter points 3. Interpolate with Gaussian process emulator → fast stand-in for actual model 4. Systematically explore parameter space with Markov chain Monte Carlo (MCMC) 5. Calibrate model emulator to optimally reproduce data → extract probability distributions for each parameter Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 4 / 17
  6. Event-by-event model MC-Glauber & MC-KLN initial conditions H.-J. Drescher and

    Y. Nara, PRC 74, 044905 (2006). Viscous 2+1D hydro H. Song and U. Heinz, PRC 77, 064901 (2008). Cooper-Frye hypersurface sampler C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, and U. Heinz, arXiv:1409.8164 [nucl-th]. UrQMD S. Bass et. al., Prog. Part. Nucl. Phys. 41, 255 (1998). M. Bleicher et. al., J. Phys. G 25, 1859 (1999). Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 5 / 17
  7. Calibration parameters Initial condition parameters: Overall normalization factor α (Glauber),

    λ (KLN) → both control centrality dependence of multiplicity Hydro parameters: Thermalization time τ0 Specific shear viscosity η/s Shear relaxation time τπ = 6kπη/(sT) [vary kπ] Design: 250 points in parameter space O(104) events at each point All parameters varied simultaneously Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 6 / 17
  8. Training data Model calculations at each parameter point 0 2000

    4000 6000 Glauber ­ Nch ® 0.00 0.04 0.08 0.12 v2 {2} 0.00 0.02 0.04 v3 {2} 0 10 20 30 40 50 Centrality % 0 2000 4000 6000 KLN 0 10 20 30 40 50 Centrality % 0.00 0.04 0.08 0.12 0 10 20 30 40 50 Centrality % 0.00 0.02 0.04 Data points: ALICE Collaboration, Pb-Pb collisions at √ sNN = 2.76 TeV B. B. Abelev et al., PRC 90, 054901 (2014), arXiv:1406.2474 [nucl-ex]. Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 7 / 17
  9. Gaussian process emulator Gaussian process: Stochastic function: maps inputs to

    normally-distributed outputs Specified by mean and covariance functions As a model emulator: Non-parametric interpolation Predicts probability distributions Narrow near training points, wide in gaps Fast “surrogate” to actual model −2 −1 0 1 2 Output Random functions 0 1 2 3 4 5 Input −2 −1 0 1 2 Output Dashed line: mean Band: 2σ uncertainty Colored lines: sampled functions Conditioned on training data (dots) Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 8 / 17
  10. Validation Independent set of validation points Run model and predict

    output with emulator at each point Accurate predictions fall on diagonal line 0 2500 5000 Predicted ­ Nch ® 2500 5000 Observed 0–5% 20–25% 40–45% 0.00 0.04 0.08 0.12 Predicted v2 {2} 0.04 0.08 0.12 0.00 0.02 0.04 Predicted v3 {2} 0.02 0.04 Horizontal error bars: 2σ emulator uncertainty Vertical error bars: 2σ statistical uncertainty Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 9 / 17
  11. Calibration Input parameters: x = (Norm, I.C. param, τ0, η/s,

    kπ) → find posterior probability distribution of true parameters x Markov chain Monte Carlo (MCMC): Directly samples probability P(x ) ∼ exp − (x − xexp)2 2σ2 Random walk through parameter space Large number of samples → chain equilibrates to posterior distribution Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 10 / 17
  12. 30 40 50 60 Normalization 0.1 0.2 0.3 α 0.4

    0.6 0.8 1.0 τ0 0.1 0.2 0.3 η/s 30 40 50 60 Normalization 0.4 0.6 0.8 1.0 kπ 0.1 0.2 0.3 α 0.4 0.6 0.8 1.0 τ0 0.1 0.2 0.3 η/s 0.4 0.6 0.8 1.0 kπ Glauber
  13. 6 9 12 15 Normalization 0.2 0.3 λ 0.4 0.6

    0.8 1.0 τ0 0.1 0.2 0.3 η/s 6 9 12 15 Normalization 0.4 0.6 0.8 1.0 kπ 0.2 0.3 λ 0.4 0.6 0.8 1.0 τ0 0.1 0.2 0.3 η/s 0.4 0.6 0.8 1.0 kπ KLN
  14. Posterior samples Model calculations over full design space 0 2000

    4000 6000 Glauber ­ Nch ® 0.00 0.04 0.08 0.12 v2 {2} 0.00 0.02 0.04 v3 {2} 0 10 20 30 40 50 Centrality % 0 2000 4000 6000 KLN 0 10 20 30 40 50 Centrality % 0.00 0.04 0.08 0.12 0 10 20 30 40 50 Centrality % 0.00 0.02 0.04 Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 13 / 17
  15. Posterior samples Emulator predictions from calibrated posterior 0 2000 4000

    6000 Glauber ­ Nch ® 0.00 0.04 0.08 0.12 v2 {2} 0.00 0.02 0.04 v3 {2} 0 10 20 30 40 50 Centrality % 0 2000 4000 6000 KLN 0 10 20 30 40 50 Centrality % 0.00 0.04 0.08 0.12 0 10 20 30 40 50 Centrality % 0.00 0.02 0.04 Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 13 / 17
  16. η/s posteriors Glauber η/s ∼ 0.06, 95% C.I. ∼ 0.02–0.10

    KLN η/s ∼ 0.16, 95% C.I. ∼ 0.12–0.21 0.0 0.1 0.2 0.3 η/s Glauber 0.08 KLN 0.20 Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 14 / 17
  17. Sensitivity Go to posterior mean Vary one parameter at a

    time; keep others fixed at mean Emulate response of each observable
  18. 0 1000 2000 3000 4000 ­ Nch ® 0.00 0.03

    0.06 0.09 0.12 v2 {2} 20 30 40 50 60 Normalization 0.00 0.01 0.02 0.03 v3 {2} 0–5% 20–25% 40–45% 0.1 0.2 0.3 α x = posterior mean band = 1σ C.I. 0.2 0.4 0.6 0.8 1.0 τ0 y = ALICE value band = uncertainty 0.0 0.1 0.2 0.3 η/s 0.2 0.4 0.6 0.8 1.0 kπ Glauber
  19. 0 1000 2000 3000 4000 ­ Nch ® 0.00 0.03

    0.06 0.09 0.12 v2 {2} 6 9 12 15 Normalization 0.00 0.01 0.02 0.03 v3 {2} 0–5% 20–25% 40–45% 0.1 0.2 0.3 λ x = posterior mean band = 1σ C.I. 0.2 0.4 0.6 0.8 1.0 τ0 y = ALICE value band = uncertainty 0.0 0.1 0.2 0.3 η/s 0.2 0.4 0.6 0.8 1.0 kπ KLN
  20. Summary Quantitative, systematic parameter extraction and model evaluation Glauber approximately

    describes Nch, v2, v3 KLN cannot simultaneously fit v2, v3 Next: Initial condition models Trento (J. S. Moreland, J. E. Bernhard, S. A. Bass, arXiv:1412.4708 [nucl-th].) fluctuated Glauber More input parameters: nucleon size, Tswitch More observables: pT , v2{4}, HBT, identified particles RHIC and LHC Improve treatment of uncertainty Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 17 / 17
  21. Gaussian processes Definition A Gaussian process is a collection of

    random variables, any finite number of which have a joint Gaussian distribution. Stochastic function: x → y x = n-dimensional input vector y = normally distributed output Specified by Mean function µ(x) Covariance function σ(x, x ), e.g.: σ(x, x ) = exp − |x − x |2 2 2 Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 1 / 6
  22. Conditioning a Gaussian process Given training input points X and

    observed training outputs y at X the predictive distribution at arbitrary test points X∗ is the multivariate-normal distribution y∗ ∼ N(µ, Σ), µ = σ(X∗, X)σ(X, X)−1y, Σ = σ(X∗, X∗) − σ(X∗, X)σ(X, X)−1σ(X, X∗). Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 2 / 6
  23. Training the emulator Covariance function: σ(x, x ) = exp

    − |x − x |2 2 2 + σ2 n δxx ( , σn) are unknown hyperparameters 0.0 0.2 0.4 0.6 0.8 1.0 x −2 −1 0 1 2 y Overfit ` = 0.02, σn = 0.001 0.0 0.2 0.4 0.6 0.8 1.0 x Oversmooth ` = 3, σn = 0.3 0.0 0.2 0.4 0.6 0.8 1.0 x Max. likelihood ` = 0.462, σn = 0.211 Actual ` = 0.5, σn = 0.2 Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 3 / 6
  24. Computer experiment design Maximin Latin hypercube Random, space-filling points Maximizes

    the minimum distance between points → avoids gaps and clusters Uniform projections into lower dimensions This work: 256 points across 5 dimensions 6 centrality bins O(107) events in total 0.0 0.1 0.2 0.3 η/s 0.2 0.4 0.6 0.8 1.0 τ0 Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 4 / 6
  25. Multivariate output 3 observables × 6 centralities = 18 outputs

    Training data Y = 256 × 18 matrix Independent emulators? What if 100 outputs? Neglects correlations Principal components Eigenvectors of sample covariance matrix Y Y = UΛU Z = √ m YU Orthogonal and uncorrelated → Emulate each PC 10 20 30 40 50 q­ Nch ® 0.04 0.05 0.06 0.07 0.08 v2 {2} Glauber 20–25% 72% 28% Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 5 / 6
  26. Multivariate output 3 observables × 6 centralities = 18 outputs

    Training data Y = 256 × 18 matrix Independent emulators? What if 100 outputs? Neglects correlations Principal components Eigenvectors of sample covariance matrix Y Y = UΛU Z = √ m YU Orthogonal and uncorrelated → Emulate each PC Dimensionality reduction: 1 2 3 4 5 6 Number of PC 0.7 0.8 0.9 1.0 Explained variance Glauber KLN Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 5 / 6
  27. Bayes’ theorem P(x |X, Y , yexp) ∝ P(X, Y

    , yexp|x )P(x ) P(x ) = prior → initial knowledge of x P(X, Y , yexp|x ) = likelihood → prob. of observing (X, Y , yexp) given proposed x P(x |X, Y , yexp) = posterior → prob. of x given observations (X, Y , yexp) Jonah Bernhard (Duke) Bayesian methods for constraining initial conditions and viscosity 6 / 6