Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Quantifying properties of hot and dense QCD mat...

Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison

Presented at the Twelfth Conference on the Intersections of Particle and Nuclear Physics http://cipanp2015.yale.edu

Avatar for Jonah Bernhard

Jonah Bernhard

May 22, 2015
Tweet

More Decks by Jonah Bernhard

Other Decks in Science

Transcript

  1. Quantifying properties of hot and dense QCD matter through systematic

    model-to-data comparison J. E. Bernhard, P. W. Marcy, C. E. Coleman-Smith, S. Huzurbazar, R. L. Wolpert, and S. A. Bass, PRC 91, 054910 (2015), arXiv:1502.00339 [nucl-th]. Jonah Bernhard (Duke University) CIPANP 2015 | Friday, May 22
  2. Collective flow and η/s b 0 fm/c ∼10 fm/c Initial

    spatial anisotropy → final momentum anisotropy (flow) Shear viscosity η/s washes out collective behavior → suppresses flow Fermi gas: K. M. O’Hara et. al., Science 298, 2179 (2002). Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 1 / 16
  3. Model-to-data comparison | < 1) lab η (| ch N

    50 100 150 200 c < 3.0 GeV/ T p < | > 1.4} η ∆ {2, | 2 v {4} 2 v = 5.02 TeV NN s ICE p-Pb | < 1) lab η (| ch N 10 2 10 3 10 2 v 0 0.02 0.04 0.06 0.08 0.1 0.12 | > 1.4} η ∆ {2, | 2 v {4} 2 v {6} 2 v 82 65 52 43 31 17 7 Centrality (%) c < 3.0 GeV/ T p 0.2 < = 2.76 TeV NN s ALICE Pb-Pb Model Initial conditions, τ0, η/s, . . . 0 2000 4000 6000 Glauber ­ Nch ® 0.00 0.04 0.08 0.12 v2 {2} 0.00 0.02 0.04 v3 {2} 0 10 20 30 40 50 Centrality % 0 2000 4000 6000 KLN 0 10 20 30 40 50 Centrality % 0.00 0.04 0.08 0.12 0 10 20 30 40 50 Centrality % 0.00 0.02 0.04 Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 2 / 16
  4. Measuring QGP η/s 1. Observe experimental flow coefficients vn 2.

    Run model with variable η/s 3. Constrain η/s by matching vn 0 10 20 30 (1/S) dN ch /dy (fm-2 ) 0 0.05 0.1 0.15 0.2 0.25 v 2 /ε 0 10 20 30 40 (1/S) dN ch /dy (fm-2 ) hydro (η/s) + UrQMD hydro (η/s) + UrQMD MC-Glauber MC-KLN 0.0 0.08 0.16 0.24 0.0 0.08 0.16 0.24 η/s η/s v 2 {2} / 〈ε2 part 〉1/2 Gl (a) (b) 〈v 2 〉 / 〈ε part 〉 Gl v 2 {2} / 〈ε2 part 〉1/2 KLN 〈v 2 〉 / 〈ε part 〉 KLN H. Song, S. A. Bass, U. Heinz, T. Hirano, and C. Shen, PRL 106, 192301 (2011), arXiv:1011.2783 [nucl-th]. Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 3 / 16
  5. Extracting QGP properties Older work Average calculations Only η/s Several

    discrete values Qualitative constraints lacking uncertainty New projects Event-by-event model Many parameters Continuous parameter space Quantitative constraints including uncertainty See also, e.g.: J. Novak, K. Novak, S. Pratt, C. Coleman-Smith, and R. Wolpert, PRC 89, 034917 (2014), arXiv:1303.5769 [nucl-th]. R. A. Soltz, I. Garishvili, M. Cheng, B. Abelev, A. Glenn, J. Newby, L. A. Linden Levy, and S. Pratt, PRC 87, 044901 (2013), arXiv:1208.0897 [nucl-th]. S. Pratt, E. Sangaline, P. Sorensen, and H. Wang, arXiv:1501.04042 [nucl-th]. −→ Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 4 / 16
  6. Strategy 1. Choose set of salient model parameters physical properties

    model nuisance parameters 2. Run model at small O(101–102) set of parameter points 3. Interpolate with Gaussian process emulator → fast stand-in for actual model 4. Systematically explore parameter space with Markov chain Monte Carlo (MCMC) 5. Calibrate model emulator to optimally reproduce data → extract probability distributions for each parameter Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 5 / 16
  7. Event-by-event model MC-Glauber & MC-KLN initial conditions H.-J. Drescher and

    Y. Nara, PRC 74, 044905 (2006). Viscous 2+1D hydro H. Song and U. Heinz, PRC 77, 064901 (2008). Cooper-Frye hypersurface sampler C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, and U. Heinz, arXiv:1409.8164 [nucl-th]. UrQMD S. Bass et. al., Prog. Part. Nucl. Phys. 41, 255 (1998). M. Bleicher et. al., J. Phys. G 25, 1859 (1999). Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 6 / 16
  8. Calibration parameters Initial condition parameters: Overall normalization factor α (Glauber),

    λ (KLN) → both control centrality dependence of multiplicity Hydro parameters: Thermalization time τ0 Specific shear viscosity η/s Shear relaxation time τπ = 6kπη/(sT) [vary kπ] Design: 250 points in parameter space O(104) events at each point All parameters varied simultaneously Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 7 / 16
  9. Training data Model calculations at each parameter point 0 2000

    4000 6000 Glauber ­ Nch ® 0.00 0.04 0.08 0.12 v2 {2} 0.00 0.02 0.04 v3 {2} 0 10 20 30 40 50 Centrality % 0 2000 4000 6000 KLN 0 10 20 30 40 50 Centrality % 0.00 0.04 0.08 0.12 0 10 20 30 40 50 Centrality % 0.00 0.02 0.04 Data points: ALICE Collaboration, Pb-Pb collisions at √ sNN = 2.76 TeV B. B. Abelev et al., PRC 90, 054901 (2014), arXiv:1406.2474 [nucl-ex]. Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 8 / 16
  10. Gaussian process emulator Gaussian process: Stochastic function: maps inputs to

    normally-distributed outputs Specified by mean and covariance functions As a model emulator: Non-parametric interpolation Predicts probability distributions Narrow near training points, wide in gaps Fast “surrogate” to actual model −2 −1 0 1 2 Output Random functions 0 1 2 3 4 5 Input −2 −1 0 1 2 Output Dashed line: mean Band: 2σ uncertainty Colored lines: sampled functions Conditioned on training data (dots) Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 9 / 16
  11. Validation Independent set of validation points Run model and predict

    output with emulator at each point Accurate predictions fall on diagonal line 0 2500 5000 Predicted ­ Nch ® 2500 5000 Observed 0–5% 20–25% 40–45% 0.00 0.04 0.08 0.12 Predicted v2 {2} 0.04 0.08 0.12 0.00 0.02 0.04 Predicted v3 {2} 0.02 0.04 Horizontal error bars: 2σ emulator uncertainty Vertical error bars: 2σ statistical uncertainty Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 10 / 16
  12. Calibration Input parameters: x = (Norm, I.C. param, τ0, η/s,

    kπ) → find posterior probability distribution of true parameters x Markov chain Monte Carlo (MCMC): Directly samples probability P(x ) ∼ exp − (x − xexp)2 2σ2 Random walk through parameter space Large number of samples → chain equilibrates to posterior distribution Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 11 / 16
  13. 30 40 50 60 Normalization 0.1 0.2 0.3 α 0.4

    0.6 0.8 1.0 τ0 0.1 0.2 0.3 η/s 30 40 50 60 Normalization 0.4 0.6 0.8 1.0 kπ 0.1 0.2 0.3 α 0.4 0.6 0.8 1.0 τ0 0.1 0.2 0.3 η/s 0.4 0.6 0.8 1.0 kπ Glauber
  14. 6 9 12 15 Normalization 0.2 0.3 λ 0.4 0.6

    0.8 1.0 τ0 0.1 0.2 0.3 η/s 6 9 12 15 Normalization 0.4 0.6 0.8 1.0 kπ 0.2 0.3 λ 0.4 0.6 0.8 1.0 τ0 0.1 0.2 0.3 η/s 0.4 0.6 0.8 1.0 kπ KLN
  15. Posterior samples Model calculations over full design space 0 2000

    4000 6000 Glauber ­ Nch ® 0.00 0.04 0.08 0.12 v2 {2} 0.00 0.02 0.04 v3 {2} 0 10 20 30 40 50 Centrality % 0 2000 4000 6000 KLN 0 10 20 30 40 50 Centrality % 0.00 0.04 0.08 0.12 0 10 20 30 40 50 Centrality % 0.00 0.02 0.04 Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 14 / 16
  16. Posterior samples Emulator predictions from calibrated posterior 0 2000 4000

    6000 Glauber ­ Nch ® 0.00 0.04 0.08 0.12 v2 {2} 0.00 0.02 0.04 v3 {2} 0 10 20 30 40 50 Centrality % 0 2000 4000 6000 KLN 0 10 20 30 40 50 Centrality % 0.00 0.04 0.08 0.12 0 10 20 30 40 50 Centrality % 0.00 0.02 0.04 Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 14 / 16
  17. η/s posteriors Glauber η/s ∼ 0.06, 95% C.I. ∼ 0.02–0.10

    KLN η/s ∼ 0.16, 95% C.I. ∼ 0.12–0.21 0.0 0.1 0.2 0.3 η/s Glauber 0.08 KLN 0.20 Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 15 / 16
  18. Conclusion Summary: Quantitative, systematic parameter extraction and model evaluation Glauber

    approximately describes Nch, v2, v3 KLN cannot simultaneously fit v2, v3 Outlook: New models More input parameters and observables RHIC and LHC Improve treatment of uncertainty Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 16 / 16
  19. Gaussian processes Definition A Gaussian process is a collection of

    random variables, any finite number of which have a joint Gaussian distribution. Stochastic function: x → y x = n-dimensional input vector y = normally distributed output Specified by Mean function µ(x) Covariance function σ(x, x ), e.g.: σ(x, x ) = exp − |x − x |2 2 2 Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 1 / 6
  20. Conditioning a Gaussian process Given training input points X and

    observed training outputs y at X the predictive distribution at arbitrary test points X∗ is the multivariate-normal distribution y∗ ∼ N(µ, Σ), µ = σ(X∗, X)σ(X, X)−1y, Σ = σ(X∗, X∗) − σ(X∗, X)σ(X, X)−1σ(X, X∗). Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 2 / 6
  21. Training the emulator Covariance function: σ(x, x ) = exp

    − |x − x |2 2 2 + σ2 n δxx ( , σn) are unknown hyperparameters 0.0 0.2 0.4 0.6 0.8 1.0 x −2 −1 0 1 2 y Overfit ` = 0.02, σn = 0.001 0.0 0.2 0.4 0.6 0.8 1.0 x Oversmooth ` = 3, σn = 0.3 0.0 0.2 0.4 0.6 0.8 1.0 x Max. likelihood ` = 0.462, σn = 0.211 Actual ` = 0.5, σn = 0.2 Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 3 / 6
  22. Computer experiment design Maximin Latin hypercube Random, space-filling points Maximizes

    the minimum distance between points → avoids gaps and clusters Uniform projections into lower dimensions This work: 256 points across 5 dimensions 6 centrality bins O(107) events in total 0.0 0.1 0.2 0.3 η/s 0.2 0.4 0.6 0.8 1.0 τ0 Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 4 / 6
  23. Multivariate output 3 observables × 6 centralities = 18 outputs

    Training data Y = 256 × 18 matrix Independent emulators? What if 100 outputs? Neglects correlations Principal components Eigenvectors of sample covariance matrix Y Y = UΛU Z = √ m YU Orthogonal and uncorrelated → Emulate each PC 10 20 30 40 50 q­ Nch ® 0.04 0.05 0.06 0.07 0.08 v2 {2} Glauber 20–25% 72% 28% Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 5 / 6
  24. Multivariate output 3 observables × 6 centralities = 18 outputs

    Training data Y = 256 × 18 matrix Independent emulators? What if 100 outputs? Neglects correlations Principal components Eigenvectors of sample covariance matrix Y Y = UΛU Z = √ m YU Orthogonal and uncorrelated → Emulate each PC Dimensionality reduction: 1 2 3 4 5 6 Number of PC 0.7 0.8 0.9 1.0 Explained variance Glauber KLN Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 5 / 6
  25. Bayes’ theorem P(x |X, Y , yexp) ∝ P(X, Y

    , yexp|x )P(x ) P(x ) = prior → initial knowledge of x P(X, Y , yexp|x ) = likelihood → prob. of observing (X, Y , yexp) given proposed x P(x |X, Y , yexp) = posterior → prob. of x given observations (X, Y , yexp) Jonah Bernhard (Duke) Quantifying QGP properties through model-to-data comparison 6 / 6