Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learningによる株価変動の予想
Search
GMO次世代
October 13, 2016
Technology
0
1.8k
Deep Learningによる株価変動の予想
2016年10月12日 GMOエンジニアトークにて公開
GMO次世代
October 13, 2016
Tweet
Share
More Decks by GMO次世代
See All by GMO次世代
ソース公開を通じて分かった非中央集権型アプリケーション(DApp)とは
jisedai
0
4.3k
AppleのARkitとGoogleの最新のARプラットフォーム ARCore 可能性と応用
jisedai
2
1.4k
IoT領域でのブロックチェーン実践
jisedai
1
1.9k
モバイルAR技術の最先端 Google Tangoを活用してバーチャル道案内スタッフを実現してみた
jisedai
1
1.4k
深層学習は金融市場をシミュレーションすることができるか?
jisedai
1
6.6k
Unity3DとOculus Riftで VR空間にWebコンテンツを表現する
jisedai
0
1.5k
ブロックチェーンを利用したサービス開発について
jisedai
1
1.2k
Other Decks in Technology
See All in Technology
履歴テーブル、今回はこう作りました 〜 Delegated Types編 〜 / How We Built Our History Table This Time — With Delegated Types
moznion
1
2.2k
Bedrock のコスト監視設計
fohte
2
250
入社したばかりでもできる、 アクセシビリティ改善の第一歩
unachang113
2
360
組織の“見えない壁”を越えよ!エンタープライズシフトに必須な3つのPMの「在り方」変革 #pmconf2025
masakazu178
1
1k
クラスタ統合リアーキテクチャ全貌~1,000万ユーザーのウェルネスSaaSを再設計~
hacomono
PRO
0
200
レガシーで硬直したテーブル設計から変更容易で柔軟なテーブル設計にする
red_frasco
4
630
Digitization部 紹介資料
sansan33
PRO
1
6k
Building AI Applications with Java, LLMs, and Spring AI
thomasvitale
1
260
『ソフトウェア』で『リアル』を動かす:クレーンゲームからデータ基盤までの統一アーキテクチャ / アーキテクチャConference 2025
genda
0
1.3k
AI開発の定着を推進するために揃えるべき前提
suguruooki
1
410
小規模チームによる衛星管制システムの開発とスケーラビリティの実現
sankichi92
0
150
Master Dataグループ紹介資料
sansan33
PRO
1
4k
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
980
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
The Invisible Side of Design
smashingmag
302
51k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Balancing Empowerment & Direction
lara
5
760
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Unsuck your backbone
ammeep
671
58k
Fireside Chat
paigeccino
41
3.7k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Transcript
GMOインターネット 次世代システム研究室
2 研究の目的 過去のデータを使って、予測を⾏いたい! -> ⾦融商品は良いターゲット 新しい手法の台頭! 従来の手法 時系列解析
3 Outline 株価データの時系列解析 Deep Learning (LSTM) を使って株価予想 なんでLSTMで予想できるの? Kerasを使ってやってみた まとめ
& 改善点
4 時系列解析
5 S&P 500 NASDAQに上場している銘柄から代表的な 500銘柄の株価を浮動株調整後の時価総額⽐率で 加重平均し、指数化したもの アメリカの代表的な 会社の株価の指標 要するに 時間軸
6 Volatility (Daily) = 1日の取引中での、値動きの大きさの指標 ~ 1日の変動 (≠ Historical volatility)
株価を直接予想したいが。。
7 Volatility of S&P500 Volatility S&P500の 実データ 時間軸 終値 高値
安値
8 時系列解析 過去に学び(学習し)、未来を予測しよう 曇り空 (→ これまで、こんな空模様の時は雨が 降ってきたなぁ。) → 午後に雨が振りそうだ! →
傘を持って⾏こう
9
10 機械学習(教師あり学習) input data output data 与えられたデータyに合うように パラメータを学習(人のアナロジー) モデル f(x)
x f(x) = ax + b f(x) vs y f(x) = 1*x + 7 f(x) = 2.1x + 1.6 input input output output
11 機械学習(教師あり学習) f(x) = a*x + b f(x) = a*sin(b*x)
適切なモデルを考える必要がある → 大変!!! (データが増えるほど) モデル モデル
12 Deep Learning Deep! 複雑な表現 層が input data output data
モデル f(x) が可能
13 RNN (Recurrent Neural Network) Deep Learningの一種 横にDeep! 過去の出⼒を⼊⼒ →
過去を記憶 時系列データに最適(ただし問題点が) 過去データ 私 は 男 で す
14 LSTM (Long Short Term Memory) 今回の解析で使用
15 LSTM Block
16 LSTM 良い点 Deepなnetworkで複雑な表現も可能に インプットに複数のデータを簡単に⼊れ られる 我々が気づかなかった関係性をキャッチ できるかも!
17 LSTM 悪い点 時間がかかる → 耐えられるレベル 一度、学習すれば速い 結果を理解しづらい 理解する努⼒が必要
18 Keras 直感的に使える TensorFlow, Theanoをバックエンドで使用 Python コード量が少ない → 初心者に優しい →
海外で人気
19 Demo
20 結果 MAPE (Mean Absolute Percentage Error) = 29.3%
21 Model構造を変えてみる LSTM IN OUT LSTM IN OUT LSTM MAPE
= 29.4% MAPE = 29.3%
22 LSTM IN OUT MAPE = 27.0% LSTM IN OUT
MAPE = 29.3% linear function
23 Loss function MAPE MSE MAPE = 29.3% MAPE =
44.3%
24 学習回数 学べば学ぶほど 良い! 、、わけではない。 25.0% 過学習?
25 過学習 過学習 モデルが学習データに適合しすぎて、ノイズま で再現するように学習するため、学習データ以 外のデータ(予想したいデータ)の予測精度が 悪化 → 適切なパラメータ数、学習回数にするこ とが大切
26 入力データを増やす 自身のデータ以外に株価に影響を与えそ うな情報を追加すれば、より良い予想が できるはず! → LSTMなら簡単に試せる。 今回は、Google Domestic Trends
(米国内のトピックごとの検索量 ~ 注目度) を採用
27 Topic: computer, credit card, invest, bankruptcy MAPE = 23.7%
改善した!
28
29 結果の比較 まだ伸びしろはありそう LSTM (Default) LSTM (modified) LSTM (add. info)
29.3% 25.0% 23.7% → 有望! (モデル修正、パラメータ調整、新しいデータ) モデルごとのMAPE
30 参考文献 勝った!
31 今後の方向性 DL(LSTM)は非常に有望。さらに深めたい Busrt(突発的な上下動)を予想したい Keyとなるパラメータ Model構造 ⼊⼒期間の⻑さ (予想に使えそうな)外部データの⼊⼒ 他の⾦融商品も予想してみたい
32 ご清聴ありがとうございました!