Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ハイパースレッディングの 並列化効率への影響 / Hyperthreading and Par...
Search
kaityo256
PRO
May 23, 2013
Programming
5
47
ハイパースレッディングの 並列化効率への影響 / Hyperthreading and Parallel Efficiency
ハイパースレッディングの有無が実アプリ(分子動力学法)に与えるの影響を1024ノード規模で調べた結果。
測定日は2011年6月と古いので注意。
kaityo256
PRO
May 23, 2013
Tweet
Share
More Decks by kaityo256
See All by kaityo256
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
7
1.3k
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
5
2k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
4
490
論文紹介のやり方 / How to review
kaityo256
PRO
15
84k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
11
1.6k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
8
550
GNU Makeの使い方 / How to use GNU Make
kaityo256
PRO
15
5.3k
制限ボルツマンマシンの話 / Introduction of RBM
kaityo256
PRO
3
1.3k
論文の読み方 / How to survey
kaityo256
PRO
223
170k
Other Decks in Programming
See All in Programming
「テストは愚直&&網羅的に書くほどよい」という誤解 / Test Smarter, Not Harder
munetoshi
0
200
AIともっと楽するE2Eテスト
myohei
8
3k
Azure AI Foundryではじめてのマルチエージェントワークフロー
seosoft
0
200
Startups on Rails in Past, Present and Future–Irina Nazarova, RailsConf 2025
irinanazarova
0
240
NPOでのDevinの活用
codeforeveryone
0
900
Agentic Coding: The Future of Software Development with Agents
mitsuhiko
0
130
AI Agent 時代のソフトウェア開発を支える AWS Cloud Development Kit (CDK)
konokenj
6
800
チームのテスト力を総合的に鍛えて品質、スピード、レジリエンスを共立させる/Testing approach that improves quality, speed, and resilience
goyoki
5
1.1k
脱Riverpod?fqueryで考える、TanStack Queryライクなアーキテクチャの可能性
ostk0069
0
500
スタートアップの急成長を支えるプラットフォームエンジニアリングと組織戦略
sutochin26
1
7.3k
TypeScriptでDXを上げろ! Hono編
yusukebe
3
770
リバースエンジニアリング新時代へ! GhidraとClaude DesktopをMCPで繋ぐ/findy202507
tkmru
3
960
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
A Tale of Four Properties
chriscoyier
160
23k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
BBQ
matthewcrist
89
9.7k
How GitHub (no longer) Works
holman
314
140k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Building an army of robots
kneath
306
45k
Side Projects
sachag
455
42k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Transcript
1/13 ハイパースレッディングの 並列化効率への影響 東京大学物性研究所 渡辺宙志 2013年5月23日
2/13 400万粒子/ノードに固定し、ノード数を増やすウィークスケーリング 1000ステップ計算するのにかかった時間をプロット @物性研 SGI Altix ICE 8400EX 観測事実 (1/2)
オーバーヘッド
3/13 観測事実 (2/2) (1) 粒度が疎、つまり計算時間に比して通信時間が相当 短いはずなのに、ウィークスケーリングで高並列時に 性能が劣化する (2) 力の計算時間を測定してみると、通信を含まないは ずなのにプロセスごとに時間がばらついている
(3) 時間のばらつきはプロセス数を増やすと大きくなり、 全体同期により性能劣化を招いている (4) まったく同じ計算をしても、遅いプロセスは毎回異なる システムノイズ(OSジッタ)だろうか? しかしOSジッタにしては影響が大きすぎる
4/13 調べたいこと (1) プロセスの実行時間の揺らぎを精密に調べる (2) ハイパースレッディング(HT) の並列性能への影響を 調べる
5/13 HTなし HTあり HTなしでは、物理コアひとつにMPIプロセス一つをバインドする。 HTありでは、物理コアが二つの論理コアになるが、 物理コア一つにMPIプロセスを一つバインド。 計算条件 (1/2) HTの有無以外の計算条件は変えない
6/13 計算条件 (2/2) 東京大学物性研究所 システムB SGI Altix ICE 8400EX CPU:
Intel Xeon X5570 2.93GHz 4コア/CPU、2CPU/ノード 計算資源: 計算条件: カットオフ2.5σのLennard-Jones粒子系 時間ステップ 0.001、数密度: 0.5 粒子数: 50万粒子/コア、 400万粒子/ノード Flat-MPIによる領域分割 計算コード:http://mdacp.sourceforge.net/ 測定日:2011年6月 ※ HT無効の計算は1ノードから1024ノードまで数点を、 HTを有効にした計算は、1024ノード、8192コアの一点のみを計算
7/13 粒子をメッシュに登録 隣接粒子リストを作成 力の計算 位置と速度を更新 リストはまだ有効か? No Yes 領域からはみ出した粒子の処理 粒子の位置情報を更新
MPI_Sendrecv MPI_Sendrecv MPI_Allreduce 計算アルゴリズム ※通信は全てブロッキング通信
8/13 粒子をメッシュに登録 隣接粒子リストを作成 力の計算 位置と速度を更新 リストはまだ有効か? No Yes 領域からはみ出した粒子の処理 粒子の位置情報を更新
測定する場所 計算全体: このループを 1000ステップ積算 力の計算: ここだけをステップごと、 プロセスごとに計測 ※計算全体は並列化効率の定義のため、力の計算は揺らぎの測定のために調べる
9/13 Hyper-Threadingの影響 HTを有効にするだけで並列化効率が 大きく改善(66%→90%)
10/13 あるステップにおける、プロセスごとの「力の計算」に かかった時間の累積確率分布 ほとんどのプロセスの揺らぎはガウス分布に従うが、飛び抜けて遅い連中がいる → システムからのノイズ? 計算時間の揺らぎ (1/3)
11/13 誤差関数でフィットしてみる 特徴的な時間「τ」 ガウス分布の標準偏差に相当 HTなし:平均時間 143.785 [ms] 標準偏差 0.29 [ms]
HTあり:平均時間 143.940 [ms] 標準偏差 0.36 [ms] 一番遅かったプロセス: HTなし: 221.543 [ms] HTあり: 164.009 [ms] 平均からのずれが256σ 統計情報からはHTなしの方が優れている(平均も揺らぎも小さい)が・・・ 一番遅いプロセスの実行時間がHTにより大きく改善された 計算時間の揺らぎ (2/3)
12/13 計算時間の揺らぎ (3/3) 各ステップでもっとも計算が遅かったランク番号 (HTあり) ロードインバランスのせいではない (同じペアリストを使い回す間は粒子ペア 数が固定であるにも関わらず、毎ステップ一番遅いプロセスが違うから) 何か構造がありそう。ラウンドロビンで何かやってる?
13/13 まとめのようなもの (1) Hyper-Threading Technologyを有効にすることで 並列化効率が大きく向上→HTによるスムーズなス レッドの切り替えが要因? (2) 揺らぐ時間は80ミリ秒といったオーダー →
OSジッタとしては大きすぎる (3) 通信を含まないはずの領域を測定しているのに、計 算時間が大きく揺らぐ →通信の後処理が割り込んでいる?