Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon S3 TablesとAmazon S3 Metadataを触ってみた / 202...
Search
kasacchiful
February 01, 2025
Programming
0
160
Amazon S3 TablesとAmazon S3 Metadataを触ってみた / 20250201-jawsug-tochigi-s3tables-s3metadata
2025/02/01 (土) JAWS-UG栃木支部#0 にて発表した資料。
勉強会サイト
https://jawsug-tochigi.connpass.com/event/342140/
kasacchiful
February 01, 2025
Tweet
Share
More Decks by kasacchiful
See All by kasacchiful
Amazon S3 TablesとAmazon S3 Metadataを動かしてみた / 20250125-niigata-5min-tech-lt
kasacchiful
0
17
dbt coreとFargateでデータ変換 / 20240928-jawsug-toyama-hokuriku-shinkansen
kasacchiful
1
91
What we keep in mind when migrating from Serverless Framework to AWS CDK and AWS SAM
kasacchiful
1
340
AWSでIcebergを使ってデータウェアハウスを構築してみる / 20240810-jawsug-akita
kasacchiful
0
41
サーバーレスパターンを元にAWS CDKでデータ基盤を構築する / 20240731_classmethod_odyssey_online_build_a_data_infrastructures_using_aws_cdk_based_on_serverless_patterns
kasacchiful
0
490
AWS IoT 1-clickがサービス終了するので、SORACOMに移行した話 / 20240518-jawsug-niigata-iotlt-niigata
kasacchiful
0
270
AWS Application Composerで始める、 サーバーレスなデータ基盤構築 / 20240406-jawsug-hokuriku-shinkansen
kasacchiful
1
580
AWSの各種サービス紹介と活用方法 − AI・ML活用デモを交えて − / 20231208aws-aiml-seminar
kasacchiful
0
540
Amazon Rekognition デモ / 20231208-aws_seminar-01-rekognition-demo
kasacchiful
0
560
Other Decks in Programming
See All in Programming
Bedrock Agentsレスポンス解析によるAgentのOps
licux
3
840
技術を根付かせる / How to make technology take root
kubode
1
250
個人アプリを2年ぶりにアプデしたから褒めて / I just updated my personal app, praise me!
lovee
0
340
プログラミング言語学習のススメ / why-do-i-learn-programming-language
yashi8484
0
130
コミュニティ駆動 AWS CDK ライブラリ「Open Constructs Library」 / community-cdk-library
gotok365
2
120
Spring gRPC について / About Spring gRPC
mackey0225
0
220
『品質』という言葉が嫌いな理由
korimu
0
160
PHPカンファレンス名古屋2025 タスク分解の試行錯誤〜レビュー負荷を下げるために〜
soichi
1
190
密集、ドキュメントのコロケーション with AWS Lambda
satoshi256kbyte
0
190
JavaScriptツール群「UnJS」を5分で一気に駆け巡る!
k1tikurisu
9
1.8k
Djangoアプリケーション 運用のリアル 〜問題発生から可視化、最適化への道〜 #pyconshizu
kashewnuts
1
250
Flutter × Firebase Genkit で加速する生成 AI アプリ開発
coborinai
0
160
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
9
440
Scaling GitHub
holman
459
140k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
330
Unsuck your backbone
ammeep
669
57k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
240
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Transcript
Amazon S 3 TablesとAmazon S 3 Metadataを触ってみた 2 0 2
5 / 0 2 / 0 1 JAWS-UG栃 木 #0 笠原 宏
自己 紹介 2 • 好きなAWSサービス ◯ S 3 , Lambda,
Step Functions • コミュニティ運営 ◦ JAWS-UG新潟 / Python機械学習勉強会 in 新潟 ◦ Cloudflare Meetup Niigata ◦ JaSST新潟 / ASTER正会員 / SWANII / etc. • AWS Community Builder ◦ Serverless (since 2 0 2 2 ) ◦ 笠原 宏 (@kasacchiful) ◦ クラスメソッド株式会社データ事業本部 ◦ JAWS-UG新潟 支 部 ◦ 新潟県新潟市在住 2
JAWS-UG 新潟 開催形式 3 本編勉強会 • 不定期開催 / 2〜3時間程度 /
オフライン • 事前にテーマ決めて開催 プチキャッチアップ会 • 毎週 木 曜夜21時 / 1時間程度 / オンライン • その場で気になる記事 見 たり、お悩み相談受けたり
Amazon S 3 Tables を触ってみた 4
Amazon S 3 Tables 5 AWS re:Invent 2 0 2
4 で公開 • Apache Iceberg形式に最適化され たオブジェクトストア • Athena, EMR, Spark等からクエリ 可能 • 汎 用 ストレージと 比 べて最 大 3倍の クエリ性能 ・ 10倍のトランザク ション処理 IUUQTEFWDMBTTNFUIPEKQBSUJDMFTSFJOWFOUBNB[POTUBCMFT
東京リージョンでも使える 6 IUUQTEFWDMBTTNFUIPEKQBSUJDMFTBNB[POTUBCMFTUPLZPSFHJPOHB
Amazon S 3 Tables の使 用 例 7 ログデータをData Firehoseを使って、S
3 Tablesに保管し、Athenaで分析
実際に触ってみる 8 分析サービスとの統合を有効化すると、テーブルバケットが作成できる
実際に触ってみる 9 テーブル作成は、Spark Shellから spark.sql() を実 行 (今回はCloudShell上で) spark-shell \
--packages org.apache.iceberg:iceberg-spark-runtime- 3.5_2.12:1.6.1,software.amazon.s3tables:s3-tables-catalog-for-iceberg- runtime:0.1.3,software.amazon.awssdk:s3tables:2.29.26,software.amazon.awssdk:s3:2.29.26,so ftware.amazon.awssdk:sts:2.29.26,software.amazon.awssdk:kms:2.29.26,software.amazon.awssdk :dynamodb:2.29.26,software.amazon.awssdk:kms:2.29.26,software.amazon.awssdk:glue:2.29.26 \ --conf spark.sql.catalog.s3tablesbucket=org.apache.iceberg.spark.SparkCatalog \ --conf spark.sql.catalog.s3tablesbucket.catalog- impl=software.amazon.s3tables.iceberg.S3TablesCatalog \ --conf spark.sql.catalog.s3tablesbucket.warehouse=<Table bucketのARN> \ --conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions \ --conf spark.driver.extraJavaOptions="-Djava.security.manager=allow"
実際に触ってみる 10 テーブル作成は、Spark Shellから spark.sql() を実 行 (今回はCloudShell上で) spark.sql(" CREATE
NAMESPACE IF NOT EXISTS s3tablesbucket.sample_namespace ") spark.sql(" SHOW NAMESPACES IN s3tablesbucket ").show() spark.sql(" CREATE TABLE IF NOT EXISTS s3tablesbucket.sample_namespace.sales ( product string, amount int, timestamp timestamp ) using iceberg ") spark.sql(" INSERT INTO s3tablesbucket.sample_namespace.sales ( product, amount, timestamp ) VALUES ( 'Laptop', 1200, '2023-12-01 10:30:00' ) “) ... spark.sql(" SELECT * FROM s3tablesbucket.sample_namespace.sales ").show()
実際に触ってみる 11 テーブル作成は、Spark Shellから spark.sql() を実 行 (今回はCloudShell上で)
実際に触ってみる 12 Lake Formationで権限付与すれば、AthenaからSelectクエリ実 行 できる
補 足 : Spark導 入 が 面 倒なら、AWS CLIとAthenaで遊べます 13
テーブル作成までCLI、データ操作からAthena IUUQTEFWDMBTTNFUIPEKQBSUJDMFTTDIFNBEF fi OJUJPOTUBCMFTDSFBUFUBCMFXJUIBXTDMJ
Amazon S 3 Metadata を触ってみた 14
Amazon S 3 Metadata 15 AWS re:Invent 2 0 2
4 で公開 • S 3 オブジェクトのメタデータを 自 動的に Apache Icebergテーブルに保存 • S 3 オブジェクトのメタデータを効率的に クエリ可能 • メタデータ: オブジェクトキー ・ 作成/変更 時間、ストレージクラス、暗号化状態など • ユーザ定義メタデータも設定 ・ クエリ可能 • バックエンドでS 3 Tablesを利 用 IUUQTEFWDMBTTNFUIPEKQBSUJDMFTBNB[POTCVDLFUNFUBEBUBQSFWJFX
GAになりました 16 東京リージョンではまだ IUUQTEFWDMBTTNFUIPEKQBSUJDMFTHBBNB[POTNFUBEBUB
Amazon S 3 Metadata の使 用 例 17 画像ファイルのメタデータ情報を機械学習で読み取り、S 3
Metadataで保存
実際に触ってみる 18 先にテーブルバケットを作成しておく
実際に触ってみる 19 汎 用 バケット作成後、メタデータ設定を作成する
実際に触ってみる 20 テーブルバケットとテーブル名を指定。テーブルは事前に作成不要。
実際に触ってみる 21 Lake Formationで権限付与後、Athenaからメタデータテーブルが参照できる。
実際に触ってみる 22 汎 用 バケットの画像ファイルを配置して数分後、メタデータが確認できる
実際に触ってみる 23 アップロードやコピーの際に、ユーザ定義メタデータを編集できる
実際に触ってみる 24 ユーザ定義メタデータの値を取得することも可能
まとめ 25
まとめ 26 S 3 Tables と S 3 Metadata を
触ってみた • Amazon S 3 Tables ◦ Apache Iceberg形式に最適化されたオブジェクトストア • Amazon S 3 Metadata ◦ S 3 オブジェクトのメタデータを 自 動的にApache Icebergテーブル (S 3 Tables) に保存 • 分析 用 途に利 用 する際の選択肢の1つ ◦ Lake Formationを有効化する必要があるため、まずは別AWSアカウント上で検証を推奨
宣伝 27
JAWS-UG 新潟 #21 28 初 心 者向けコンテナハンズオン • 2025年3 月
15 日 ( 土 ) 13:00開始 ◦ 会場: Prototype Cafe (新潟市中央区)
JAWS-UG 新潟 #22 & JAWS-UG 北陸新幹線 #3 29 4 月
12 日 ( 土 ) に 上越で初開催 • 2025年4 月 12 日 ( 土 ) 13:00 開始 (予定) • 会場: ミュゼ雪 小 町 (上越市 高田 ) ◦ 北陸新幹線「上越妙 高 駅」乗り換え、えちごトキメキ鉄道「 高田 駅」から徒歩5分 ◦ 当 日 は「第100回 高田 城址公園 観桜会」開催期間中のため、例年通りならば新潟駅発の 臨時快速が出るはず (2025年1 月 現在は未定)
おしまい 30