Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データマイニングの前処理について
Search
katsutan
March 01, 2017
Technology
0
400
データマイニングの前処理について
長岡技術科学大学 自然言語処理研究室 B3ゼミ発表6
katsutan
March 01, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
230
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
210
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
260
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
210
Improving Word Embeddings Using Kernel PCA
katsutan
0
220
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
320
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
300
Other Decks in Technology
See All in Technology
Data Hubグループ 紹介資料
sansan33
PRO
0
2.5k
Claude Codeを使った情報整理術
knishioka
20
12k
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.9k
技術選定、下から見るか?横から見るか?
masakiokuda
0
180
BidiAgent と Nova 2 Sonic から考える音声 AI について
yama3133
2
140
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
59k
[PR] はじめてのデジタルアイデンティティという本を書きました
ritou
0
760
自己管理型チームと個人のセルフマネジメント 〜モチベーション編〜
kakehashi
PRO
5
1.8k
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
130
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
CQRS/ESになぜアクターモデルが必要なのか
j5ik2o
0
520
モノタロウ x クリエーションラインで実現する チームトポロジーにおける プラットフォームチーム・ ストリームアラインドチームの 効果的なコラボレーション
creationline
0
390
Featured
See All Featured
Mind Mapping
helmedeiros
PRO
0
45
Scaling GitHub
holman
464
140k
Claude Code のすすめ
schroneko
67
210k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
150
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
110
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
400
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Getting science done with accelerated Python computing platforms
jacobtomlinson
0
88
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Transcript
データマイニングの 前処理について 長岡技術科学大学 自然言語処理研究室 学部3年 勝田 哲弘 1 2017/3/2
データマイニングのプロセス 2 2017/3/2 入力:データ データの収集・前処理 処理済みデータ データマイニング 発掘されたデータ 後処理 出力
データマイニングのプロセス 3 2017/3/2 入力:データ データの収集・前処理 処理済みデータ データマイニング 発掘されたデータ 後処理 必要な情報源を探索し収集
データの構造に適した マイニングを行う 理解しやすい表示
前処理 • データの質が悪いと、良い結果が出ない。 • 前処理 ▫ 数値の離散化 ▫ 属性選択 ▫
属性の構築 ▫ 事例の選択 4 2017/3/2
数値の離散化 • 等間隔区間 • 等頻度区間 • エントロピーによる手法 データをソートしておく。 それぞれの属性に対して単独で行われる。 2017/3/2
5
数値の離散化 • 情報エントロピーに基づいて属性間の相関を考 慮する手法 • 部分空間クラスタリング 属性間の相関を考慮した手法 2017/3/2 6
属性選択 • 必要最低限のデータを取り出してデータを削減 • 削減方法 ▫ 属性の削除 ▫ 事例の削除 •
属性選択 ▫ フィルタ法 ▫ ラッパ法 2017/3/2 7
属性選択 • フィルタ法 ▫ 属性選択の評価に適当な基準を用いる ▫ 処理時間が短い ▫ 学習モデルを知らなくてよい •
ラッパ法 ▫ 学習結果から分類誤差などを用いる ▫ 精度は良いが、処理時間の点から実用的でない 2017/3/2 8
属性選択 • フィルタ法 ▫ 探索法 前向き、後向き、両方向、ランダム ▫ 戦略
完全探索 深さ優先、幅優先、反復深化 ヒューリスティックス探索 上位を残して他を削除 非決定的探索 ランダム探索 2017/3/2 9
属性構築 • 元の属性から帰納的に構築 +1 = 1 ∗ 2 , +2
= 1 ^2 • 事前データから学習する ▫ データ駆動型 ▫ 仮説駆動型 遺伝的アルゴリズム 2017/3/2 10
事例選択 • データ削除 2017/3/2 11
事例選択 • データ削除 2017/3/2 12
事例選択 • CNNアルゴリズム • IBLアルゴリズム • ENNアルゴリズム • など 2017/3/2
13 }最近傍法 }最近傍法で削除する 事例を選択
付録 • Weka ▫ データマイニングのオープンソース ▫ データの前処理、マイニング、結果の後処理に関 連するメソッドを提供 2017/3/2 14
参考文献 • データマイニングの基礎 元田浩、津本周作、山口高平、沼尾正行 共著 オーム社 2017/3/2 15