Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データマイニングの前処理について
Search
katsutan
March 01, 2017
Technology
0
390
データマイニングの前処理について
長岡技術科学大学 自然言語処理研究室 B3ゼミ発表6
katsutan
March 01, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
180
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
160
Simple task-specific bilingual word embeddings
katsutan
0
180
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
210
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
160
Improving Word Embeddings Using Kernel PCA
katsutan
0
180
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
250
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
230
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
250
Other Decks in Technology
See All in Technology
RubyのWebアプリケーションを50倍速くする方法 / How to Make a Ruby Web Application 50 Times Faster
hogelog
3
950
日経電子版のStoreKit2フルリニューアル
shimastripe
1
140
CDCL による厳密解法を採用した MILP ソルバー
imai448
3
130
アジャイルチームがらしさを発揮するための目標づくり / Making the goal and enabling the team
kakehashi
3
140
SRE×AIOpsを始めよう!GuardDutyによるお手軽脅威検出
amixedcolor
0
170
OCI Vault 概要
oracle4engineer
PRO
0
9.7k
ExaDB-D dbaascli で出来ること
oracle4engineer
PRO
0
3.9k
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
iOSチームとAndroidチームでブランチ運用が違ったので整理してます
sansantech
PRO
0
150
The Role of Developer Relations in AI Product Success.
giftojabu1
0
130
心が動くエンジニアリング ── 私が夢中になる理由
16bitidol
0
100
強いチームと開発生産性
onk
PRO
35
11k
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
26
2.1k
Building Your Own Lightsaber
phodgson
103
6.1k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Automating Front-end Workflow
addyosmani
1366
200k
Fireside Chat
paigeccino
34
3k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Designing for humans not robots
tammielis
250
25k
GitHub's CSS Performance
jonrohan
1030
460k
Writing Fast Ruby
sferik
627
61k
Keith and Marios Guide to Fast Websites
keithpitt
409
22k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
Transcript
データマイニングの 前処理について 長岡技術科学大学 自然言語処理研究室 学部3年 勝田 哲弘 1 2017/3/2
データマイニングのプロセス 2 2017/3/2 入力:データ データの収集・前処理 処理済みデータ データマイニング 発掘されたデータ 後処理 出力
データマイニングのプロセス 3 2017/3/2 入力:データ データの収集・前処理 処理済みデータ データマイニング 発掘されたデータ 後処理 必要な情報源を探索し収集
データの構造に適した マイニングを行う 理解しやすい表示
前処理 • データの質が悪いと、良い結果が出ない。 • 前処理 ▫ 数値の離散化 ▫ 属性選択 ▫
属性の構築 ▫ 事例の選択 4 2017/3/2
数値の離散化 • 等間隔区間 • 等頻度区間 • エントロピーによる手法 データをソートしておく。 それぞれの属性に対して単独で行われる。 2017/3/2
5
数値の離散化 • 情報エントロピーに基づいて属性間の相関を考 慮する手法 • 部分空間クラスタリング 属性間の相関を考慮した手法 2017/3/2 6
属性選択 • 必要最低限のデータを取り出してデータを削減 • 削減方法 ▫ 属性の削除 ▫ 事例の削除 •
属性選択 ▫ フィルタ法 ▫ ラッパ法 2017/3/2 7
属性選択 • フィルタ法 ▫ 属性選択の評価に適当な基準を用いる ▫ 処理時間が短い ▫ 学習モデルを知らなくてよい •
ラッパ法 ▫ 学習結果から分類誤差などを用いる ▫ 精度は良いが、処理時間の点から実用的でない 2017/3/2 8
属性選択 • フィルタ法 ▫ 探索法 前向き、後向き、両方向、ランダム ▫ 戦略
完全探索 深さ優先、幅優先、反復深化 ヒューリスティックス探索 上位を残して他を削除 非決定的探索 ランダム探索 2017/3/2 9
属性構築 • 元の属性から帰納的に構築 +1 = 1 ∗ 2 , +2
= 1 ^2 • 事前データから学習する ▫ データ駆動型 ▫ 仮説駆動型 遺伝的アルゴリズム 2017/3/2 10
事例選択 • データ削除 2017/3/2 11
事例選択 • データ削除 2017/3/2 12
事例選択 • CNNアルゴリズム • IBLアルゴリズム • ENNアルゴリズム • など 2017/3/2
13 }最近傍法 }最近傍法で削除する 事例を選択
付録 • Weka ▫ データマイニングのオープンソース ▫ データの前処理、マイニング、結果の後処理に関 連するメソッドを提供 2017/3/2 14
参考文献 • データマイニングの基礎 元田浩、津本周作、山口高平、沼尾正行 共著 オーム社 2017/3/2 15