Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データマイニングの前処理について
Search
katsutan
March 01, 2017
Technology
0
410
データマイニングの前処理について
長岡技術科学大学 自然言語処理研究室 B3ゼミ発表6
katsutan
March 01, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
230
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
210
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
260
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
210
Improving Word Embeddings Using Kernel PCA
katsutan
0
230
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
320
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
300
Other Decks in Technology
See All in Technology
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
11
4.5k
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
170
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
120
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
GCASアップデート(202510-202601)
techniczna
0
250
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
150
今日から始めるAmazon Bedrock AgentCore
har1101
4
390
(金融庁共催)第4回金融データ活用チャレンジ勉強会資料
takumimukaiyama
0
120
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
2
370
入社1ヶ月でデータパイプライン講座を作った話
waiwai2111
1
220
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
120
Featured
See All Featured
Color Theory Basics | Prateek | Gurzu
gurzu
0
190
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
640
Code Review Best Practice
trishagee
74
20k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
310
The SEO identity crisis: Don't let AI make you average
varn
0
64
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
110
Automating Front-end Workflow
addyosmani
1371
200k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
55
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Transcript
データマイニングの 前処理について 長岡技術科学大学 自然言語処理研究室 学部3年 勝田 哲弘 1 2017/3/2
データマイニングのプロセス 2 2017/3/2 入力:データ データの収集・前処理 処理済みデータ データマイニング 発掘されたデータ 後処理 出力
データマイニングのプロセス 3 2017/3/2 入力:データ データの収集・前処理 処理済みデータ データマイニング 発掘されたデータ 後処理 必要な情報源を探索し収集
データの構造に適した マイニングを行う 理解しやすい表示
前処理 • データの質が悪いと、良い結果が出ない。 • 前処理 ▫ 数値の離散化 ▫ 属性選択 ▫
属性の構築 ▫ 事例の選択 4 2017/3/2
数値の離散化 • 等間隔区間 • 等頻度区間 • エントロピーによる手法 データをソートしておく。 それぞれの属性に対して単独で行われる。 2017/3/2
5
数値の離散化 • 情報エントロピーに基づいて属性間の相関を考 慮する手法 • 部分空間クラスタリング 属性間の相関を考慮した手法 2017/3/2 6
属性選択 • 必要最低限のデータを取り出してデータを削減 • 削減方法 ▫ 属性の削除 ▫ 事例の削除 •
属性選択 ▫ フィルタ法 ▫ ラッパ法 2017/3/2 7
属性選択 • フィルタ法 ▫ 属性選択の評価に適当な基準を用いる ▫ 処理時間が短い ▫ 学習モデルを知らなくてよい •
ラッパ法 ▫ 学習結果から分類誤差などを用いる ▫ 精度は良いが、処理時間の点から実用的でない 2017/3/2 8
属性選択 • フィルタ法 ▫ 探索法 前向き、後向き、両方向、ランダム ▫ 戦略
完全探索 深さ優先、幅優先、反復深化 ヒューリスティックス探索 上位を残して他を削除 非決定的探索 ランダム探索 2017/3/2 9
属性構築 • 元の属性から帰納的に構築 +1 = 1 ∗ 2 , +2
= 1 ^2 • 事前データから学習する ▫ データ駆動型 ▫ 仮説駆動型 遺伝的アルゴリズム 2017/3/2 10
事例選択 • データ削除 2017/3/2 11
事例選択 • データ削除 2017/3/2 12
事例選択 • CNNアルゴリズム • IBLアルゴリズム • ENNアルゴリズム • など 2017/3/2
13 }最近傍法 }最近傍法で削除する 事例を選択
付録 • Weka ▫ データマイニングのオープンソース ▫ データの前処理、マイニング、結果の後処理に関 連するメソッドを提供 2017/3/2 14
参考文献 • データマイニングの基礎 元田浩、津本周作、山口高平、沼尾正行 共著 オーム社 2017/3/2 15