Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データマイニングの前処理について
Search
katsutan
March 01, 2017
Technology
0
400
データマイニングの前処理について
長岡技術科学大学 自然言語処理研究室 B3ゼミ発表6
katsutan
March 01, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
210
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
190
Simple task-specific bilingual word embeddings
katsutan
0
200
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
240
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
190
Improving Word Embeddings Using Kernel PCA
katsutan
0
210
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
290
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
250
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
280
Other Decks in Technology
See All in Technology
製造業からパッケージ製品まで、あらゆる領域をカバー!生成AIを利用したテストシナリオ生成 / 20250627 Suguru Ishii
shift_evolve
PRO
1
140
Clineを含めたAIエージェントを 大規模組織に導入し、投資対効果を考える / Introducing AI agents into your organization
i35_267
4
1.6k
本が全く読めなかった過去の自分へ
genshun9
0
340
Windows 11 で AWS Documentation MCP Server 接続実践/practical-aws-documentation-mcp-server-connection-on-windows-11
emiki
0
970
フィンテック養成勉強会#54
finengine
0
180
生成AI活用の組織格差を解消する 〜ビジネス職のCursor導入が開発効率に与えた好循環〜 / Closing the Organizational Gap in AI Adoption
upamune
2
1.6k
20250625 Snowflake Summit 2025活用事例 レポート / Nowcast Snowflake Summit 2025 Case Study Report
kkuv
1
310
BrainPadプログラミングコンテスト記念LT会2025_社内イベント&問題解説
brainpadpr
1
160
How Community Opened Global Doors
hiroramos4
PRO
1
120
プロダクトエンジニアリング組織への歩み、その現在地 / Our journey to becoming a product engineering organization
hiro_torii
0
130
OpenHands🤲にContributeしてみた
kotauchisunsun
1
430
HiMoR: Monocular Deformable Gaussian Reconstruction with Hierarchical Motion Representation
spatial_ai_network
0
110
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
The Cult of Friendly URLs
andyhume
79
6.5k
Designing for Performance
lara
609
69k
Fireside Chat
paigeccino
37
3.5k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
700
A designer walks into a library…
pauljervisheath
207
24k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Music & Morning Musume
bryan
46
6.6k
Transcript
データマイニングの 前処理について 長岡技術科学大学 自然言語処理研究室 学部3年 勝田 哲弘 1 2017/3/2
データマイニングのプロセス 2 2017/3/2 入力:データ データの収集・前処理 処理済みデータ データマイニング 発掘されたデータ 後処理 出力
データマイニングのプロセス 3 2017/3/2 入力:データ データの収集・前処理 処理済みデータ データマイニング 発掘されたデータ 後処理 必要な情報源を探索し収集
データの構造に適した マイニングを行う 理解しやすい表示
前処理 • データの質が悪いと、良い結果が出ない。 • 前処理 ▫ 数値の離散化 ▫ 属性選択 ▫
属性の構築 ▫ 事例の選択 4 2017/3/2
数値の離散化 • 等間隔区間 • 等頻度区間 • エントロピーによる手法 データをソートしておく。 それぞれの属性に対して単独で行われる。 2017/3/2
5
数値の離散化 • 情報エントロピーに基づいて属性間の相関を考 慮する手法 • 部分空間クラスタリング 属性間の相関を考慮した手法 2017/3/2 6
属性選択 • 必要最低限のデータを取り出してデータを削減 • 削減方法 ▫ 属性の削除 ▫ 事例の削除 •
属性選択 ▫ フィルタ法 ▫ ラッパ法 2017/3/2 7
属性選択 • フィルタ法 ▫ 属性選択の評価に適当な基準を用いる ▫ 処理時間が短い ▫ 学習モデルを知らなくてよい •
ラッパ法 ▫ 学習結果から分類誤差などを用いる ▫ 精度は良いが、処理時間の点から実用的でない 2017/3/2 8
属性選択 • フィルタ法 ▫ 探索法 前向き、後向き、両方向、ランダム ▫ 戦略
完全探索 深さ優先、幅優先、反復深化 ヒューリスティックス探索 上位を残して他を削除 非決定的探索 ランダム探索 2017/3/2 9
属性構築 • 元の属性から帰納的に構築 +1 = 1 ∗ 2 , +2
= 1 ^2 • 事前データから学習する ▫ データ駆動型 ▫ 仮説駆動型 遺伝的アルゴリズム 2017/3/2 10
事例選択 • データ削除 2017/3/2 11
事例選択 • データ削除 2017/3/2 12
事例選択 • CNNアルゴリズム • IBLアルゴリズム • ENNアルゴリズム • など 2017/3/2
13 }最近傍法 }最近傍法で削除する 事例を選択
付録 • Weka ▫ データマイニングのオープンソース ▫ データの前処理、マイニング、結果の後処理に関 連するメソッドを提供 2017/3/2 14
参考文献 • データマイニングの基礎 元田浩、津本周作、山口高平、沼尾正行 共著 オーム社 2017/3/2 15